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Abstract 

This dissertation addresses the problem of designing algorithms for learning in em- 

bedded systems. This problem differs from the traditional supervised learning prob- 

lem. An agent, finding itself in a particular input situation must generate an ac- 

tion. It then receives a reinforcement value from the environment, indicating how 

valuable the current state of the environment is for the agent. The agent cannot, 

however, deduce the reinforcement value that would have resulted from executing 

any of its other actions. A number of algorithms for learning action strategies 

from reinforcement values are presented and compared empirically with existing 

reinforcement-learning algorithms. 

The interval-estimation algorithm uses the statistical notion of confidence in- 

tervals to guide its generation of actions in the world, trading off acting to gain 

information against acting to gain reinforcement. It performs well in simple do- 

mains but does not exhibit any generalization and is computationally complex. 

The cascade algorithm is a structural credit-assignment method that allows an 

action strategy with many output bits to be learned by a collection of reinforcement- 

learning modules that learn Boolean functions. This method represents an improve- 

ment in computational complexity and often in learning rate. 

Two algorithms for learning Boolean functions in fc-DNF are described. Both 

are based on Valiant's algorithm for learning such functions from input-output in- 

stances. The first uses Sutton's techniques for linear association and reinforcement 

comparison, while the second uses techniques from the interval estimation algo- 

rithm. They both perform well and have tractable complexity. 



A generate-and-test reinforcement-learning algorithm is presented. It allows 

symbolic representations of Boolean functions to be constructed incrementally and 

tested in the environment. It is highly parametrized and can be tuned to learn 

a broad range of function classes. Low-complexity functions can be learned very 

efficiently even in the presence of large numbers of irrelevant input bits. This 

algorithm is extended to construct simple sequential networks using a set-reset 

operator, which allows the agent to learn action strategies with state. 

These algorithms, in addition to being studied in simulation, were implemented 

and tested on a physical mobile robot. 

VI 
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Chapter 1 

Introduction 

Embedded systems, such as autonomous robots and process controllers, must be 

able to learn about and adapt to their environments. This dissertation addresses 

the problem of designing algorithms for learning in embedded systems. It provides 

a formal framework in which this problem can be explored, discusses previous work 

in this area, and then goes on to present novel algorithms for efficient and effective 

learning in embedded systems. These algorithms are explored theoretically and are 

validated empirically, both in simulation and in use on a mobile robot. 

1.1    Why Learn? 

Why should we build learning agents? A program that "learns" is not intrinsically 

better than one that does not. 

One reason to build learning agents is that it is very difficult for humans to write 

explicit programs for agents that must work in complex, uncertain environments. 

In programming robots, for instance, it is common for a human programmer to 

learn a great deal about the operation of the robot's sensors and effectors in the 

course of debugging programs for the robot. It would be much easier and less time- 

consuming if the programmer were able to articulate only general principles about 

the environment, allowing the robot to experiment and learn about the details. 

1 



2 CHAPTER 1.   INTRODUCTION 

Another reason for building agents that learn to act is that we would like to 

have agents that are flexible enough to work in a variety of environments, adapting 

their perception and action strategies to the worlds in which they find themselves. 

Even if a human could completely specify the program for an agent operating in 

a particular environment, the agent's program would have to be respecified if the 

agent were moved to a new environment. 

1.2    Reinforcement Learning 

When building learning agents, the goal of the agent's designer is for the agent 

to learn what actions it should perform in which situations in order to maximize 

an external measure of success. All of the information the agent has about the 

external world is contained in a series of inputs that it receives from the environment. 

These inputs may encode information ranging from the output of a vision system 

to a robot's current battery voltage. The agent can be in many different states 

of information about the environment, and it must map each of these information 

states, or situations, to a particular action that it can perform in the world. The 

agent's mapping from situations to actions is referred to as an action map. Part 

of the agent's input from the world encodes the agent's reinforcement, which is a 

scalar measure of how well the agent is performing in the world. The agent should 

learn to act in such a way as to maximize the total reinforcement it gains over its 

lifetime. 

As a concrete example, consider a simple robot with two wheels and two photo- 

sensors. It can execute five different actions: stop, go forward, go backward, turn 

left, and turn right. It can sense three different states of the world: the light 

in the left eye is brighter than that in the right eye, the light in the right eye is 

brighter than that in the left eye, and the light in both eyes is roughly equally bright. 

Additionally, the robot is given high values of reinforcement when the average value 

of light in the two eyes is increased from the previous instant. In order to maximize 

its reinforcement, this robot should turn left when the light in its left eye is brighter, 

turn right when the light in its right eye is brighter, and move forward when the 
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light in both eyes is equal.   The problem of learning to act is to discover such a 

mapping from information states to actions. 

Thus, the problem of learning to act can be cast as a function-learning problem: 

the agent must learn a mapping from the situations in which it finds itself, repre- 

sented by streams of input values, to the actions it can perform. In the simplest 

case, the mapping will be a pure function of the current input value, but in general 

it can have state, allowing the action taken at a particular time to depend on the 

entire stream of previous input values. 

In the past few years there has been a great deal of work in the artificial in- 

telligence (AI) and theoretical computer science communities on the problem of 

learning pure Boolean-valued functions [31,43,50,55,76]. Unfortunately, this work 

is not directly relevant to the problem of learning action maps because of the differ- 

ent settings of the problem. In the traditional function-learning work, often referred 

to in the AI community as "concept learning," a learning algorithm is presented 

with a set or series of input-output pairs that specify the correct output to be gener- 

ated for that particular input. This setting allows for effective function learning, but 

differs from the situation of an agent trying to learn an action map. The agent, find- 

ing itself in a particular input situation, must generate an action. It then receives 

a reinforcement value from the environment, indicating how valuable the current 

world state is for the agent. The agent cannot, however, deduce the reinforcement 

value that would have resulted from executing any of its other actions. Also, if the 

environment is noisy, as it will be in general, just one instance of performing an 

action in a situation may not give an accurate picture of the reinforcement value of 

that action. 

This learning scenario reduces to concept learning when the agent has only two 

possible actions, the world generates Boolean reinforcement that depends only on 

the most recently taken action, there is exactly one action that generates the high 

reinforcement value in each situation, and there is no noise. In this case, from 

performing a particular action in a situation, the agent can deduce that it was the 

correct action if it was positively reinforced; otherwise it can infer that the other 

action would have been correct. 
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The problem of learning action maps by trial and error is often referred to 

as reinforcement learning because of its similarity to models used in psychological 

studies of behavior-learning in humans and animals [22]. It is also referred to as 

"learning with a critic," in contrast with the "learning with a teacher" of tradi- 

tional supervised concept learning [81]. One of the most interesting facets of the 

reinforcement-learning problem is the tension between performing actions that are 

not well understood in order to gain information about their reinforcement value 

and performing actions that are expected to be good in order to increase overall 

reinforcement. If an agent knows that a particular action works well in a certain 

situation, it must trade off performing that action against performing another one 

that it knows nothing about, in case the second action is even better than the first. 

Or, as Ashby [6] put it, 

The process of trial and error can thus be viewed from two very different 

points of view. On the one hand it can be regarded as simply an attempt 

at success; so that when it fails we give zero marks for success. From this 

point of view it is merely a second-rate way of getting to success. There 

is, however, the other point of view that gives it an altogether higher 

status, for the process may be playing the invaluable part of gathering 

information, information that is absolutely necessary if adaptation is to 

be successfully achieved. 

The longer the time span over which the agent will be acting, the more important 

it is for the agent to be acting on the basis of correct information. Acting to gain 

information may improve the expected long-term performance while causing short- 

term performance to decline. 

Another important aspect of the reinforcement-learning problem is that the ac- 

tions that an agent performs influence the input situations in which it will find itself 

in the future. Rather than receiving an independently chosen set of input-output 

pairs, the agent has some control over what inputs it will receive and complete 

control over what outputs will be generated in response. In addition to making 

it difficult to make distributional statements about the inputs to the agent, this 
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degree of control makes it possible for what seem like small "experiments" to cause 

the agent to discover an entirely new part of its environment. 

1.3 Models versus Action Maps 

One way for an agent to learn an action map is first to learn a state-transition model 

of the world and the expected reinforcement value gained from being in each world 

state, and then to apply standard dynamic programming techniques to choose the 

best action from any given world state. Although this method will work in the 

general case, the internal structures that the agent must build up will tend to be 

quite complex. 

When the target action-map is state-free, it can be represented much more 

compactly and executed much more directly as a simple function, rather than as 

a world model with a procedure for choosing the optimal action. Sutton [72] and 

Whitehead and Ballard [80] have found that in cases in which the reinforcement 

from the world is delayed, learning may be sped up by a kind of compilation from 

a world model. However, this opens up the new problem of learning world models, 

which has been addressed by a number of people, including Sutton and Pinette [73], 

Drescher [18], Mason, Christiansen, and Mitchell [40], Mel [42], and Shen [68]. 

This dissertation will focus on methods for learning action maps without using 

models. Even those methods that do use models have this simpler form of reinforce- 

ment learning as a component, so improved algorithms for learning action maps will 

benefit both approaches. 

1.4 Statistical versus Symbolic Learning 

Most previous learning work can be divided into statistical and symbolic methods. 

Statistical learning encompasses much of the early learning work in pattern 

recognition [54] and adaptive control [25], as well as current work in artificial neural 

networks (also known as connectionist systems) [9]. The internal representations 

used are typically numeric and the correctness of algorithms is demonstrated using 
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statistical methods. These systems tend to be highly noise-tolerant and robust. 

However, the internal states are difficult for humans to interpret and the algorithms 

often perform poorly on complex problems. 

More symbolic approaches to learning, such as those standardly pursued in the 

artificial intelligence community, attempt to address these issues of understandabil- 

ity and complexity. They have resulted in algorithms, such as Mitchell's version 

spaces [49] and Michalski's STAR [43], that use easily-interpretable symbolic repre- 

sentations and whose correctness hinges on arguments from logic rather than from 

statistics. These algorithms tend to suffer from noise-intolerance and high compu- 

tational complexity, more so than statistical algorithms do. 

One of the aims of the work in this dissertation is to blend the statistical and 

the symbolic in algorithms for reinforcement learning in embedded systems. An 

important characteristic of most embedded systems is that they operate in environ- 

ments that are not (to them) completely predictable. In order to work effectively 

in such environments, a system must be able to summarize general tendencies of 

its environment. The well-understood methods of statistics are most appropriate 

for this task. This does not, however, mean we must abandon all of the benefits of 

symbolic AI methods. Rather, these two approaches can be synthesized to make 

learning systems that are robust and noise-tolerant as well as being easy to under- 

stand and capable of working in complex environments. A good example of this 

kind of synthesis is Quinlan's successful concept-learning method, ID3 [55]. Within 

the combined approach, complexity issues can be addressed by explicitly considering 

limited classes of functions to be learned. 

Many researchers use symbolic representations because, as Michie [45] puts it, 

"In AI-type learning, explainability is all." That is not the motivation for this 

work, which simply seeks the most effective algorithms for building embedded sys- 

tems. There is, however, an important benefit of using symbolic representations of 

concepts and strategies being learned by an agent: it may allow the learned knowl- 

edge to be more easily integrated with knowledge that is provided by humans at 

design time. Although such integration is not explored in this dissertation, it is an 

important direction in which learning research should be pursued. 
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1.5     Organization 

The next chapter addresses the formal foundations of reinforcement learning. These 

arise largely from previous work in statistics, dynamic programming, and learning- 

automata theory. These foundations are important to AI because they allow widely 

disparate algorithms to be compared in common, objective terms. Chapter 3 goes 

on to present previous work on algorithms for reinforcement learning from a variety 

of different literatures. This previous work is the direct basis of many of the new 

algorithms and results presented in this dissertation. 

Chapter 4 describes a novel statistical algorithm for reinforcement learning. 

It empirically shows this algorithm to be more effective than a variety of other 

reinforcement-learning algorithms. Finally, it discusses weaknesses of this algo- 

rithm and other related algorithms, due to high computational complexity and lack 

of generalization across input instances. 

Chapter 5 describes a problem reduction and an algorithm that can be used to 

implement it. The problem of learning an action map with many output bits can 

be reduced to the problem of learning many action maps, each with a single output 

bit. This will allow us to restrict our attention to learning action maps that can 

be described as Boolean functions, knowing they can be recombined to form more 
complex systems. 

Chapters 6 and 7 each present a novel algorithm for learning Boolean func- 

tions from reinforcement; these algorithms represent points on a generality-efficiency 

tradeoff. The algorithm in Chapter 6 is restricted to learning Boolean functions de- 

scribable as prepositional formulae in the class *-DNF, but it learns these functions 

more efficiently than the algorithms of Chapters 3 and 4. The algorithm in Chapter 

7 is more flexible—according to the settings of internal parameters, it can be made 

more or less restricted and, hence, more or less efficient. 

All of the discussion up to this point has been of environments that present 

reinforcement immediately and of action maps that are pure, state-free functions. 

Chapter 8 presents an extended version of the algorithm of Chapter 7 that can learn 
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simple action maps with state. Chapter 9 addresses the problem of delayed rein- 

forcement. It presents two existing methods and shows how they may be combined 

with the statistical method developed in Chapter 4. 

The algorithms presented in this dissertation are finally validated through their 

application to moderately complex domains, including a real mobile robot. Chapter 

10 describes these experiments, documenting their successes and failures. Finally, 

Chapter 11 summarizes the work presented in the previous chapters. It notes prob- 

lems and points out important directions for future research. 



Chapter 2 

Foundations 

This chapter focuses on building formal foundations for the problem of learning in 

embedded systems. These foundations must allow a clear statement of the problem 

and provide a basis for evaluating and comparing learning algorithms. It is impor- 

tant to establish such a basis: there are many instances in the machine learning 

literature of researchers doing interesting work on learning systems, but reporting 

the results using evaluation metrics that make it difficult to compare their results 

with the results of others. The foundational ideas presented in this chapter are a 

synthesis of previous work in statistics [12], dynamic programming [57], the theory 

of learning automata [53], and previous work on the foundations of reinforcement 

learning [8,70,71,78,83,84]. 

2.1     Acting in a Complex World 

An embedded system, or agent, can be seen as acting in a world, continually exe- 

cuting a procedure that maps the agent's perceptual inputs to its effector outputs. 

Its world, or environment, is everything that is outside the agent itself, possibly 

including other robotic agents or humans. The agent operates in a cycle, receiving 

an input from the world, performing some computation, then generating an output 

that affects the world. The mapping that it uses may have state or memory, allow- 

ing its action at any time to depend, potentially, on the entire stream of inputs that 

9 
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it has received until that time. Such a mapping from an input stream to an output 

stream is referred to as a behavior. 

In order to study the effectiveness of particular behaviors, whether or not they 

involve learning, we must model the connection between agent and world, under- 

standing how an agent's actions affect its world and, hence, its own input stream. 

2.1.1    Modeling an Agent's Interaction with the World 

The world can be modeled as a deterministic finite automaton whose state transi- 

tions depend on the actions of an agent [41]. From the agent's perspective, the world 

is everything that is not itself, including other agents and processes. This model 

will be extended to include non-deterministic worlds in the next section. A world 

can be formally modeled as the triple (5, A, W), in which S is the set of possible 

states of the world, A is the set of possible outputs from the agent to the world (or 

actions that can be performed by the agent), and W is the state transition function, 

mapping S x A into S. Once the world has been fixed, the agent can be modeled as 

the 4-tuple (J, I,R,B) where I is the set of possible inputs from the world to the 

agent, J is a mapping from 5 to J that determines which input the agent will receive 

when the world is in a given state, R is the reinforcement function of the agent that 

maps S into real numbers (it may also be useful to consider more limited models 

in which the output of the reinforcement function is Boolean-valued), and B is the 

behavior of the agent, mapping J* (streams of inputs) into A. The expressions i{t) 

and a(t) will denote the input received by the agent at time t and the action taken 

by the agent at time t, respectively. 

The process of an agent's interaction with the world is depicted in Figure 1. 

The world is in some internal state, 5, which is projected into i and r by the input 

and reinforcement functions / and R. These values serve as inputs to the agent's 

behavior, B, which generates an action a as output. Once per synchronous cycle 

of this system, the value of a, together with the old value of world state s, is 

transformed into a new value of world state s by the world's transition function W. 
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Figure 1: An agent's interaction with its world. 

Note that if the agent does not have a simple stimulus-response behavior, but 

has some internal state, then the action taken by the behavior can be a function 

of both its input and its internal state. This internal state may allow the agent 

to discriminate among more states of the world and, hence, to obtain higher rein- 

forcement values by performing more appropriate actions. To simplify the following 

discussion, actions will be conditioned only on the input, but the treatment can be 

extended to the case in which the action depends on the agent's internal state as 

well. 

2.1.2    Inconsistent Worlds 

One of the most difficult problems that a learning agent must contend with is 

apparent inconsistency. A world is said to be apparently inconsistent for an agent if 

it is possible that, on two different occasions in which the agent receives the same 

input and generates the same action, the next states of the world differ in their 

reinforcement or the world changes state in such a way that the same string of 

future actions will have different reinforcement results. 
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There axe many different phenomena that can account for apparent inconsis- 

tency: 

• The agent does not have the ability to discriminate among all world states. 

If the agent's input function I is not one-to-one, which will be the case in 

general, then an individual input could have arisen from many world states. 

When some of those states respond differently to different actions, the world 

will appear inconsistent to the agent. 

• The agent has "faulty" sensors. Some percentage of the time, the world is in 

a state 5, which should cause the agent to receive I(s) as input, but it appears 

that the world is in some other state s', causing the agent to receive I(s') as 

input instead. Along with the probability of error, the nature of the errors 

must be specified: are the erroneously perceived states chosen maliciously, 

or according to some distribution over the state space, or contingently upon 

what was to have been the correct input? 

• The agent has "faulty" effectors. Some percentage of the time, the agent 

generates action a, but the world actually changes state as if the agent had 

generated a different action a'. As above, both the probability and nature of 

the errors must be specified. 

• The world has a probabilistic transition function. In this case, the world is a 

stochastic automaton whose transition function, W, actually maps S x A into 

a probability distribution over S (a mapping from 5 into the interval [0,1]) 

that describes the probability that each of the states in S will be the next 

state of the world. 

Some specific cases of noise phenomena above have been studied in the formal 

function-learning literature. Valiant [76] has explored a model of noise in which, 

with some small probability, the entire input instance to the agent can be chosen 

maliciously. This corresponds, roughly, to having simultaneous faults in sensing 

and action that can be chosen in a way that is maximally bad for the learning algo- 

rithm. This model is overly pessimistic and is hard to justify in practical situations. 
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Angluin [5] works with a model of noise in which input instances are misclassified 

with some probability; that is, the output part of an input-output pair is specified 

incorrectly. This is a more realistic model of noise, but is not directly applicable to 

the action-learning problem under consideration here. 

If the behavior of faulty sensors and effectors is not malicious, the inconsistency 

they cause can be described by transforming the original world model into one in 

which the set of world states, 5, is identical to the set of agent inputs, 2, and 

in which the world has a probabilistic transition function. Inconsistency due to 

inability to discriminate among world states can also be modeled in this way, but 

such a model is correct only for the one-step transition probabilities of the system. 

Reducing each of these phenomena to probabilistic world-transition functions allows 

the rest of the discussion of embedded behaviors to ignore the other possible modes 

of inconsistency. The remainder of this section shows how to transform worlds with 

each type of inconsistency into worlds with state set I and probabilistic transition 

functions. 

Consider an agent, embedded in a world with deterministic transition function 

W, whose effectors are faulty with probability p, so that when the intended action is 

a, the actual action is v{a). This agent's situation can be described by a probabilistic 

world transition function W'(s, a) that maps the value of W(s, a) to the probability 

value 1 - p, the value of W(s, v{a)) to the probability value p and all other states 

to probability value 0. That is, 

W'(s,a)(W(s,a))   =   1 - p 

W(«,a)(W(«,i/(a))   =   p 

The result of performing action a in state s will be W(s,a) with probability 1 - 

p, and W(s,u(a)) with probability p. Figure 2 depicts this transition function. 

First, a deterministic transition is made based on the action of the agent; then, a 

probabilistic transition is made by the world. This model can be easily extended 

to the case in which v is a mapping from actions to probability distributions over 

actions. For all a' not equal to a, the value of W(s, a') is mapped to the probability 

value p v(a)(a'), which is the probability, p, of an error times the probability that 
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x_p^%W{s,a) 

W(s, v(a)) 

Figure 2: Modeling faulty effectors as a probabilistic world transition function. 

action a' will be executed given that the agent intended to execute the action a. 

The value of W(s,a) is mapped to the probability value 1 — p + p v(a)(a), which 

is the probability that there is no error, plus the probability that the error actually 

maps back to the correct action. 

Faulty input sensors are somewhat more difficult to model. Let the agent's 

sensors be faulty with probability p, yielding a value I{y{s)) rather than I(s). We 

can construct a new model with a probabilistic world-transition function in which 

the states of the world are those that the agent thinks it is in. The model can be 

most simply viewed if the world makes more than one probabilistic transition, as 

shown in Figure 3. If it appears that the world is in state 5, then with probability 

ps, it actually is, and the first transition is to the same state. The rest of the 

probability mass is distributed over the other states in the inverse image of s under 

v, i/-1(s), causing a transition to some world state s' with probability ps>. Next, 

there is a transition to a new state on the basis of the agent's action according to 

the original transition function W. Finally, with probability p, the world makes a 

transition to the state i/(W(s',a)), allowing for the chance that this result will be 

misperceived on the next tick. In Figure 4, the diagram of Figure 3 is converted 

into a more standard form, in which the agent performs an action, and then the 

world makes a probabilistic transition. This construction can also be extended to 

the cases in which u(s) is a probability distribution over S and in which the initial 

world-transition function is probabilistic. 
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P*^ v(W(s,a)) 

P^*v(W(s',a)) 
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Figure 3: Modeling faulty sensors with multiple probabilistic transitions. 
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ß W(s,a) 
P.(l-P) 

P.P 
v(W(s,a)) 

P.P 
v(W(s',a)) 

PAI-P) 
1i   W(s',a) 

Figure 4: Modeling faulty sensors as a probabilistic world transition function. 

We can construct an approximate model of an agent's inability to discriminate 

among world states by creating a new model of the world in which the elements 

of J are the states, standing for equivalence classes of the states in the old model. 

Let {si, ...,s„} be the inverse image of i under i". There is a probabilistic transition 

to each of the Sj, based on the probability, pj, that the world is in state Sj given 

that the agent received the input i. From each of these states, the world makes 

a transition on the basis of the agent's action, a, to the state W(sj,a), which is 

finally mapped back down to the new state space by the function I. This process is 

depicted in Figure 5 and the resulting transition function is shown in Figure 6. The 

new transition function gives a correct 1-step model of the transition probabilities, 

but will not generate the same distribution of sequences of two or more states. 

In the construction for faulty sensors, it is necessary to evaluate the probability 

that the world is in some state Sk, given that it appears to the agent to be in another 

state s. This probability depends on the unconditional probability that the world 

is in the state sfc, as well as the unconditional probability that the world appears 

to be in the state s. These unconditional probabilities depend, in the general case, 

on the behavior that the agent is executing, so the construction cannot be carried 

out before the behavior is fixed.  A similar problem exists for the case of lack of 
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Figure 5: Modeling inability to discriminate among worlds. 

{*!/(*) = /} 

I(W(spa)) 

Figure 6: Modeling inability to discriminate among worlds as a probabilistic world 
transition function. 
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discrimination: it is necessary to evaluate the probability that the world is in each 

of the individual states in the inverse image of input i under I given that the agent 

received input i. These probabilities also depend on the behavior that is being 

executed by the agent. This leads to a very complex optimization problem that is, 

in its general form, beyond the scope of this work. 

This dissertation will mainly address learning in worlds that are globally consis- 

tent for the learning agent. A world is globally consistent for an agent if and only if 

for all inputs i € 1 and actions a € A, the expected value of the reinforcement given 

i and a is constant. Global consistency allows for variations in the result of perform- 

ing an action in a situation, as long as the expected, or average, result is the same. 

It simply requires that there not be variations in the world that are undetectable by 

the agent and that affect its choice of action. Important hidden state in the world 

can cause such variations; methods for learning to act in such worlds are discussed 

in Chapter 8. If the transformation described above has been carried out so that 

the sets I and S are the same, the requirement for global consistency is tantamount 

to requiring that the resulting world be a Markov decision process with stationary 

transition and output probabilities [35]. In addition, the following discussion will 

assume that the world is consistent over changes in the agent's behavior. 

2.1.3    Learning Behaviors 

The problem of programming an agent to behave correctly in a world is to choose 

some behavior B, given that the rest of the parameters of the agent and world are 

fixed. If the programmer does not know everything about the world, or if he wishes 

the agent he is designing to be able to operate in a variety of different worlds, he 

must program an agent that will learn to behave correctly. That is, he must find 

a behavior B' that, through changing parts of its internal state on the basis of its 

perceptual stream, eventually converges to some behavior B" that is appropriate for 

the world that gave rise to its perceptions. Of course, to say that a program learns 

is just to take a particular perspective on a program with internal state. A behavior 

with state can be seen as "learning" if parts of its state eventually converge to some 
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Figure 7: Decomposition of a learning behavior. 

fixed or slowly-varying values.   The behavior that results from those parameters 

having been fixed in that way can be called the "learned behavior."1 

A learning behavior is an algorithm that learns an appropriate behavior for an 

agent in a world. It is itself a behavior, mapping elements of I to elements of A, 

but it requires the additional input r, which designates the reinforcement value of 

the world state for the agent. A learning behavior consists of three parts: an initial 

state s0, an update function u, and an evaluation function e.2 At any moment, the 

internal state, s, encodes whatever information the learner has chosen to save about 

its interactions with the world. The update function maps an internal state of the 

learner, an input, an action, and a reinforcement value into a new internal state, 

adjusting the current state based on the reinforcement resulting from performing 

that action in that input situation. The evaluation function maps an internal state 

1In general, it is very difficult to formally differentiate between processes to which we would apply 
the natural language term "perception" and those to which we would apply the term "learning." In 
common usage, "perception" tends to refer to gaining information that is specific, transient, or at a 
low level of abstraction, whereas "learning" tends to refer to more general information that is true 
over longer time spans. This issue is addressed in more detail in a paper comparing different views 
of the nature of knowledge [34]. 

2From this point on, the variable s will refer to an internal state of the learning behavior. Because 
we have assumed the transformations described in the previous section, it is no longer important to 
name the different states of the world. 
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s := sO 
loop 

i := input 
a := e(s,i) 
output a 
r := reinforcement 
s := u(«,i,a,r) 

end loop 

Figure 8: General algorithm for learning behaviors. 

and an input into an action, choosing the action that seems most useful for the agent 

in that situation, based on the information about the world stored in the internal 

state. Recall that an action can be useful for an agent either because it has a high 

reinforcement value or because the agent knows little about its outcome. Figure 7 

shows a schematic view of the internal structure of a learning behavior. The register 

s has initial value s0 and can be thought of as programming the evaluation function 

e to act as a particular action map. The update function, it, updates the value of 

s on each clock tick. 

A general algorithm for learning behaviors, based on these three components, is 

shown in Figure 8. The internal state is initialized to s0, and then the algorithm 

loops forever. An input is read from the world and the evaluation function is 

applied to the internal state and the input, resulting in an action, which is then 

output. At this point, the world makes a transition to a new state. The program 

next determines the reinforcement associated with the new world state, uses that 

information, together with the last input and action, to update the internal state, 

and then goes back to the top of its loop. Formulating learning behaviors in terms 

of s0, c, and u facilitates building experimental frameworks that allow testing of 

different learning behaviors in a wide variety of real and simulated worlds. 
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2.2    Performance Criteria 

In order to compare algorithms for learning behaviors, we must fix the criteria on 

which they are to be judged. There are three major considerations: correctness, 

convergence, and time-space complexity. First, we must determine the correct be- 

havior for an agent in a domain. Then we can measure to what degree a learned 

behavior approximates the correct behavior and the speed, in terms of the number 

of interactions with the world, with which it converges. We must also be concerned 

with the amount of time and space needed for computing the update and evaluation 

functions and with the size of the internal state of the algorithm. 

2.2.1    Correctness 

When shall we say that a behavior is correct for an agent in an environment? 

There are many possible answers that will lead to different learning algorithms and 

analyses. An important quantity is the expected reinforcement that the agent will 

receive in the next instant, given that the current input is i(t) and the current action 

is a(i), which can be expressed as 

er(i(t),a(t))   =   E(R(i(t -f 1)) | i(t),a(t)) 

=   £ WWW), «(0XO- 

It is the sum, over all possible next world states, of the probability that the world 

will make a transition to that state times its reinforcement value. This formulation 

assumes that the inputs directly correspond to the states of the world and that 

W is a probabilistic transition function. If the world is globally consistent for the 

agent, the process is Markov and the times are irrelevant in the above definition, 

allowing it to be restated as 

er(i,a) = Y,R(i')W(h")(i')- 
t'€T 

One of the simplest criteria is that a behavior is correct if, at each step, it 

performs the action that is expected to cause the highest reinforcement value to be 
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received on the next step. A correct behavior, in this case, is one that generates 

actions that are optimal under the following definition: 

Vt € l,a e A. Opt(i.a) <-> Va' € A. er(i,a) > er(t',a') . 

Optimal behavior is defined as a relation on inputs and actions rather than as a 

function, because there may be many actions that are equally good for a given 

input. However, it can be made into a function by breaking ties arbitrarily. This 

is a local criterion that may cause the agent to sacrifice future reinforcement for 

immediately attainable current reinforcement. 

The concept of expected reinforcement can be made more global by considering 

the total expected reinforcement for a finite future interval, or horizon, given that 

an action was taken in a particular input situation. This is often termed the value 

of an action, and it is computed with respect to a particular behavior (because the 

value of the next action taken depends crucially on how the agent will behave after 

that). In the following, expected reinforcement is computed under the assumption 

that the agent will act according to the optimal policy the rest of the time. The 

expected reinforcement, with horizon k, of doing action a in input situation i at 

time t is defined as 

erk(i(t),a(t)) = £(£i2(i(* + j)) I i(t),a(t),Vh < k. Optk_h(i(t + h),a(t + h))) . 

This expression can be simplified to a recursive, time-independent formulation, in 

which the Ar-step value of an action in a state is just the one-step value of the action 

in the state plus the expected k—1 -step value of the optimal action for horizon ib -1 

in the following state: 

erk(i,t) = er(i,a)+ £ ^i.aXOer^^Opt^^O) . 
t'€X 

This definition is recursively dependent on the definition of optimality k steps into 

the future, Opt^: 

Vi € 2, a 6 A. Opt^(i,a) *-> Va' € A. erk(i,a) > erk(i,a') . 
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The values of erx and Optx are just er and Opt given above. The fc-step value of 

action a in situation i at time t, erk(i, a), can be computed by dynamic program- 

ming [12]. First, the Optx relation is computed; this allows the er2 function to be 

calculated for all i and a. Proceeding for k steps will generate the value for erk. 

Because of the assumption that the world is Markov, these values are not dependent 

on the time. However, if k is large, the computational expense of this method is 

prohibitive. 

Another way to define global optimality is to consider an infinite sum of future 

reinforcement values in which near term values are weighted more heavily than 

values to be received in the distant future. This is referred to as a discounted 

sum, depending on the parameter j to specify the rate of discounting. Expected 

discounted reinforcement at time t is defined as 

er7(t(<),a(0) = Ei^-'R^t + j)) | i(t),a(t),Vh > 0. 0pt7(i(< + h),a(t + h))) . 
3=1 

Properties of the exponential allow us to reduce this expression to 

er(i(t), a(t)) + yer^(i(t + 1), a(t + 1)) , 

which can be expressed independent of time as 

er7(t, a) = cr(i, a) + 7 £ W'(i, a)(i')er^i', 0pt7(i')) • 
i'ex 

The related definition of 7-discounted optimality is given by 

V» € l,a € A. 0pt7(t',a) «-» W € A. er7(i,a) > cr7(t,a
/) . 

For a given value of 7 and a proposed definition of 0pt7, er7 can be found by solving 

a system of equations, one for each possible instantiation of its arguments. A dy- 

namic programming method called policy iteration [57] can be used in conjunction 

with that solution method to adjust policy 0pt7 until it is truly the optimal behav- 

ior. This definition of optimality is more widely used than finite-horizon optimality 

because its exponential form makes it more computationally tractable. It is also an 

intuitively satisfying model, with slowly diminishing importance attached to events 

in the distant future. 
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Figure 9: A sample deterministic world. The numbers represent the immediate 
reinforcement values that the agent will receive when it is in each of the states. The 
only choice of action is in state A. 

As an illustration of these different measures of optimality, consider the world 

depicted in Figure 9. In state A, the agent has a choice as to whether to go right or 

left; in all other states the world transition is the same no matter what the agent 

does. In the left loop, the only reinforcement comes at the last state before state 

A, but it has value 6. In the right loop, each state has reinforcement value 1. Thus, 

the average reinforcement is higher around the left loop, but it comes sooner around 

the right loop. The agent must decide what action to take in state A. Different 

definitions of optimality lead to different choices of optimal action. 

Under the local definition of optimality, we have er(A, L) = 0 and er (A, R) = 1. 

The expected return of going left is 0 and of going right is 1, so the optimal action 

would be to go right. 

Using the finite-horizon definition of optimality, which action is optimal depends 

on the horizon. For very short horizons, it is clearly better to go right. When the 

horizon, k, is 5, it becomes better to go left. A general rule for optimal behavior is 

that when in state A, if the horizon is 5 or more, go left, otherwise go right. Figure 

10 shows a plot of the values of going left (solid line) and going right (dashed line) 

initially, assuming that all choices are made optimally thereafter. We can see that 

going right is initially best, but it is dominated by going left for all k > 5. 
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er 

Figure 10: Plot of expected return against horizon k. Solid line indicates strategy 
of going left first, then behaving optimally. Dashed line indicates strategy of going 
right first, then behaving optimally. 

Figure 11: Plot of expected return against discount factor 7.  Solid line indicates 
strategy of always going left. Dashed line indicates strategy of always going right. 
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Finally, we can consider discounted expected value. Figure 11 shows a plot of 

the values of the strategies of always going left at state A (solid line) and always 

going right at state A (dashed line) plotted as a function of 7. When there is a great 

deal of discounting (7 is small), it is best to go right because the reward happens 

sooner. As 7 increases, going left becomes better, and at approximately 7 = 0.915, 

going left dominates going right. 

Using a global optimality criterion can require agents to learn that chains of 

actions will result in states with high reinforcement value. In such situations, the 

agent takes actions not because they directly result in good states, but because they 

result in states that are closer to the states with high payoff. One way to design 

learning behaviors that attempt to achieve these difficult kinds of global optimality 

is to divide the problem into two parts: transducing the global reinforcement signal 

into a local reinforcement signal and learning to perform the locally best action. 

The global reinforcement signal is the stream of values of R(i(t)) that come from 

the environment. The optimal local reinforcement signal, R(i(t)), can be denned 

as R(i(t)) + 7er7(i(t), Opt7(i(t)). It is the value of the state i(t) assuming that the 

agent acts optimally. As shown by Sutton [70], this signal can be approximated 

by the value of the state i(t) given that the agent follows the policy it is currently 

executing. Sutton's adaptive heuristic critic (AHC) algorithm, an instance of the 

general class of temporal difference methods, provides a way of learning to generate 

the local reinforcement signal from the global reinforcement signal in such a way 

that, if combined with a correct local learning algorithm, it will converge to the 

true optimal local reinforcement values [70,71]. A complication introduced by this 

method is that, from the local behavior-learner's point of view, the world is not 

stationary. This is because it takes time for the AHC algorithm to converge and 

because changes in the behavior cause changes in the values of states and therefore 

in the local reinforcement function. This and related methods will be explored 

further in Chapter 9. 

The following discussion will be in terms of some definition of the optimality of 

an action for a situation, Opt(t, a), which can be defined in any of the three ways 
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above, or in some novel way that is more appropriate for the domain in which a 

particular agent is working. 

2.2.2    Convergence 

Correctness is a binary criterion: either a behavior is or is not correct for its world. 

Since correctness requires that the behavior perform the optimal actions from the 

outset, it is unlikely that any "learning" behavior will ever be correct. Using a 

definition of correctness as a reference, however, it is possible to develop other 

measures of how close particular behaviors come to the optimal behavior. This 

section will consider two different classes of methods for characterizing how good 

or useful a behavior is in terms of its relation to the optimal behavior. 

Classical Convergence Measures 

Early work in the theory of machine learning was largely concerned with learning 

in the limit [13,27]. A behavior converges to the optimal behavior in the limit if 

there is some time after which every action taken by the behavior is the same as 

the action that would have been taken by the optimal behavior. 

Work in learning-automata theory has relaxed the requirements of learning in the 

limit by applying different definitions of probabilistic convergence to the sequence of 

internal states of a learning automaton. Following Narendra and Thathachar [53], 

the definitions are presented here. A learning automaton is said to be expedient if 

Um£[M(n)]<M0 , 

where M(n) is the average penalty (they are trying to minimize "penalty" rather 

than maximize "reinforcement"—merely a terminological difference) for the internal 

state at time step n and M0 is M(n) for the pure-chance automaton that selects 

each action randomly with a uniform distribution. A learning automaton is said to 

be optimal if 

nlim£[M(n)] = c, , 
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where Q = mirii{ci} and c,- is the expected penalty of executing action i. A learning 

automaton is said to be e-optimal if 

lim E[M(n)] < c, + e 
It—+00 

can be obtained for any arbitrary e > 0 by a proper choice of the parameters of the 

automaton. Finally, a learning automaton is said to be absolutely expedient if 

E[M(n + 1) | s(n)] < M(n) 

for all legal internal states of the algorithm s(n) and for all possible sets {c,}(t = 

1,2,...,r) (under the assumption that environments with all expected penalties 

equal are excluded). 

An important recent theoretical development is a model of Boolean-function 

learning algorithms that are probably approximately correct (PAC) [5,76], that is, 

that have a high probability of converging to a function that closely approximates 

the optimal function. The correctness of a function is measured with respect to a 

fixed probability distribution on the input instances—a function is said to approx- 

imate another function to degree e if the probability that they will disagree on any 

instance chosen according to the given probability distribution is less than e. This 

model requires that there be a fixed distribution over the input instances and that 

each input to the algorithm be drawn according to that distribution. 

For an agent to act effectively in the world, its inputs must provide some infor- 

mation about the state that the world is in. In general, when the agent performs an 

action it will bring about a change in the state of the world and, hence, a change in 

the information the agent receives about the world. Thus, it will be very unlikely 

that such an agent's inputs could be modeled as being drawn from a fixed distribu- 

tion, making PAC-convergence an inappropriate model for autonomous agents. 

In addition, the PAC-learning model is distribution-independent—it seeks to 

make statements about the performance of algorithms no matter how the input 

instances are distributed. As Buntine has pointed out [14], its predictions are often 

overly conservative for situations in which there is a priori information about the 

distribution of the input instances, or even in which certain properties of the actual 

sample, such as how many distinct elements it contains, are known. 
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Measuring Error over an Agent's Lifetime 

None of the classical convergence measures take into account the behavior of the 

agent during the period in which it converges. Instead, they make what is, for an 

agent embedded in the world, an artificial distinction between a learning phase and 

an acting phase. Autonomous agents that have extended run times will be expected 

to learn for their entire lifetime. Because they may not encounter certain parts or 

aspects of their environments until arbitrarily late in the run, it is inappropriate to 

require all mistakes to be made before some fixed deadline. 

Another way of characterizing the performance of a function-learning algorithm 

is to count the divergences it makes from the optimal function. Littlestone [37] has 

investigated this model extensively, characterizing the optimal number of 'mistakes' 

for a Boolean-function learner and presenting algorithms that perform very well, 

under this measure, on certain classes of Boolean functions. This model is intuitively 

pleasing, making no restrictive division into learning and acting phases, but it is not 

presented as being suited to noisy or inconsistent domains. However, by assimilating 

the inconsistency of the domain into the definition of the target function, as in the 

requirement for optimal behavior, Opt, we can make use of mistake bounds in 

inconsistent domains. A behavior is said to make an avoidable mistake if, given 

some input instance i, it generates action a and Opt(i, a) does not hold; that is, 

there was some other action that would have had a higher expected reinforcement. 

Avoidable mistake bounds take into account the fact that many mistakes cannot 

be avoided by an agent with limited sensory abilities and unreliable effectors. How- 

ever, this measure is not entirely appropriate, because every non-optimal choice of 

action is considered to be a mistake of the same magnitude. The expected error of 

an action a given an input i, err(a, i), is denned to be 

err(a, i) = er(a', i) — er(a, i) , 

in which a' is any action such that opt(a', i). The expected error associated with 

an optimal action is 0; for a non-optimal action, it is just the decrease in expected 

reinforcement due to having executed that action rather than an optimal one. The 

error of a behavior, either in the limit, or for runs of finite length, can be measured 
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by summing the errors of the actions it generates. This value, referred to in the 

statistics literature as the regret of a strategy [12], represents the expected amount 

of reinforcement lost due to executing this behavior rather than an optimal one. 

This is an appropriate performance metric for agents embedded in inconsistent 

environments because it measures expected loss of reinforcement, which is precisely 

what we would like to minimize in our agents. 

In many situations, the optimal behavior is unknown or difficult to compute, 

which makes it difficult to calculate the error of a given behavior. It is still possi- 

ble to use this measure to compare two different behaviors for the same agent and 

environment. The expected reinforcement for an algorithm over some time period 

can be estimated by running it several times and averaging the resulting total rein- 

forcements. Because expectations are additive, the difference between the expected 

errors of two algorithms is the same as the difference between their expected total 

reinforcement values. Thus, the difference between average reinforcements is a valid 

measure of a behavior's correctness that is independent of the internal architecture 

of the algorithm and that can be used to compare results across a wide variety of 

techniques. 

2.2.3    Time and Space Complexity 

Autonomous agents must operate in the real world, continually receiving inputs 

from and performing actions on their environments. Because the world changes 

dynamically, an autonomous agent must be reactive—always aware of and reacting 

to changes in its environment. To ensure reactivity, an agent must operate in real- 

time; that is, its sense-compute-act cycle must keep pace with the unfolding of 

important events in the environment. The exact constraints on the reaction time of 

an agent are often difficult to articulate, but it is clear that, in general, unbounded 

computation must never take place. 

A convenient way to guarantee real-time performance is to require that the 

behavior spend only a constant amount of time, referred to as a 'tick,' generating 

an action in response to each input. If the behavior is a learning behavior, the 

learning process must also spend only a constant amount of time on each input 
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instance. There are two strategies for designing such a learning system: incremental 

and batch. 

An incremental system processes each new data set or learning instance as it 

arrives as input. The processing must be efficient enough that the system is always 

ready for new data when it arrives. If new relevant data can arrive every tick, 

the learning algorithm must spend only one constant tick's worth of time on each 

instance. The requirement for incrementality can, theoretically, be relaxed to yield a 

batch system, in which a number of learning instances are collected, then processed 

for many ticks. As long as the learning system adheres to the tick discipline, this 

process need not interfere with the reactiveness of the rest of the system. Working 

in batch mode may limit the usefulness of the learning system to some degree, 

however, because the system will be working with old data that may not reflect the 

current situation and it will force the data that arrive during the computation phase 

to be ignored. When using this method, the input data must be sampled with care, 

in order to avoid statistical distributions of inputs that do not reflect those of the 

external world. 

An algorithm can be said to be strictly incremental3 if it uses a bounded amount 

of time and space throughout its entire lifetime. This is in contrast with such 

approaches as Kibler and Aha's instance-based learning [1], which is incremental 

in that it processes one instance at a time, but is not strictly incremental because 

instances are stored in a memory whose size may increase without bound. For an 

incremental system that processes one instance per tick to perform in real time, the 

system must be strictly incremental. 

By definition, the amount of time a strictly incremental behavior spends on each 

input does not vary as a function of the number of inputs that have been received. 

It will, however, depend on the size of the input and the output, but that is fixed at 

design time. This allows the programmer to know how long each tick of the learning 

behavior will take to compute on the available hardware and to compare that rate 

with the pace of events in the world. 

sThis terminology was suggested by R. Sutton. 
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Any formalization of the interaction between an agent and its world will depend 

on the rate of the interaction; behaviors that work at different rates will essentially 

be working in different environments. The expected values of optimal behaviors 

for different reaction rates will be quite different. In general, up to some minimum 

value, the faster an agent can interact with the world, the better (otherwise the 

agent does not have time to avert impending bad events), so we should strive for the 

most efficient algorithms possible, though a slow algorithm with better convergence 

properties might be preferable to a fast algorithm that is far from optimal. 

Complex agents, such as mobile robots with a wide variety of sensors and ef- 

fectors, will have a huge number of possible inputs and outputs. If algorithms for 

these agents are to be practical, they must have time and space complexity that 

is at worst polynomial in the number of input bits, lg(| J |), and the number of 

output bits, lg(| A |), rather than the number of inputs and outputs. As we shall 

see in Section 4.6, this will only be achievable, in general, by limiting the class of 

behaviors that can be learned by the agent. 

2.3    Related Foundational Work 

The problem of learning the structure of a finite-state automaton from examples 

has been studied by many theoreticians, including Moore [51], Gold [28] and, more 

recently, Rivest and Schapire [56]. This is a very difficult problem that has only 

been studied in the case of deterministic automata. If the entire structure of the 

world can be learned, it is conceptually straightforward to compute the optimal 

behavior. It is important to note, however, that learning an action-map that max- 

imizes reinforcement is likely to be much less complex than learning the world's 

transition function. 

Watkins [78] presents a clear discussion of different types of optimality from an 

operations-research perspective and characterizes possible algorithms for learning 

optimal behavior from delayed rewards. Sutton [70,71] shows how to divide the 

problem of learning from delayed reinforcement into the problems of locally optimal 

behavior learning and secondary reinforcement-signal learning.   The implications 
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of these ideas for learning from delayed reinforcement will be explored further in 

Chapter 9. 

Williams has done important work on the foundations of reinforcement learning, 

which is considerably different than the framework provided in this chapter [83,84]. 

He has developed a general form for expressing reinforcement algorithms in which 

a wide variety of existing reinforcement learning algorithms may be described. In 

addition, he has shown that the algorithms expressed in this form are performing 

a gradient ascent search, in which the average update of the internal parameters of 

the algorithm is in the direction of steepest ascent for expected reinforcement. 



Chapter 3 

Previous Approaches 

The problem of learning from reinforcement has been studied by a variety of re- 

searchers: statisticians studying the "two-armed bandit" problem, psychologists 

working on mathematical learning theory, learning-automata theorists, and AI re- 

searchers. This chapter explores the differing frameworks in which these groups have 

studied reinforcement learning and presents a few important algorithms and results 

from each area. It presents previous approaches only to the simple reinforcement- 

learning scenario in which all reinforcement is instantaneous (the goal is to optimize 

local, immediate reinforcement) and the action maps to be learned are pure func- 

tions. As these assumptions are relaxed, later in the dissertation, other relevant 

work pertaining to the more complex situations will be discussed. 

3.1    Bandit Problems 

The reinforcement learning problem is addressed within the statistics community 

as the "two-armed bandit" problem: given a machine with two levers that pays 

some amount of money each time a lever is pulled, develop a strategy that gains the 

maximum payoff over time by choosing which lever to pull based on the previous 

experience of lever-pulling and payoffs. Among the early results was that the "stick 

with a winner but switch on a loser" strategy is expedient (better than random), 

but not optimal [12]. 

35 
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Algorithm 1 (BANDIT) The initial state, s0, consists of 8 components: c, an array 
with two integer elements, and integers d and I. Initially, c contains zeros, d = — 1, 
and 1 = 0. 

u(s,a,r) =   ifd=—lthen 
c[a] := c[a] + 1 

e(s) = if d= —\ then 
if c[0] — c[l] > k then begin 

d := 0; return 0; end 
else if c[l] — c[0] > k then begin 

d:= 1; return 1; end 
else if I = 0 then begin 

I := 1; retfurn 1; end 
eke 5e<7tn 

/ := 0; return 0; en<2 
eise return d 

Figure 12: Formal description of the BANDIT algorithm. 

Most of the technical results in this area make very strict assumptions about the 

a priori information the player has about the probabilistic models underlying the 

payoff processes of the two arms. These results may be useful in restricted situations, 

but are not applicable to the general problem of building learning agents. 

There has been some consideration, however, of the minimal case, in which it 

is assumed that the events of arm-pulling are independent, that they pay off either 

nothing or a fixed amount, that the probability of each arm paying off remains 

constant for the entire game, and that the world will choose the probabilities in 

the way that is worst for the player. It has been shown [12] that the best possible 

strategy for such a domain has regret proportional to (1 — 7)-1^2 for discounting 

factor 7 and to n1/2 for finite horizon n. 

An example algorithm satisfying these requirements is formally described in 

Figure 12.1  The algorithm alternates between the two arms, keeping track of the 

1There is no input argument, i, to the update and evaluation functions. This algorithm, as well 
as most of the others in the first part of the chapter, makes a choice about what action to perform 
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number of successes of each. When the number of successes of one arm exceeds the 

number of successes of the other by a number k, it chooses the winning arm forever 

into the future. The array c contains counts of the number of successes of each arm; 

d encodes the decision about future actions; if it has value — 1, the decision has not 

yet been made; / encodes the last action taken so that the algorithm can alternate 

between actions in the pre-decision phase. If reinforcement is to be optimized over 

a fixed horizon n, k should be chosen to be n1/2. If reinforcement with discounting 

factor 7 is to be optimized, k should be chosen to be (1 — 7)"1/2. This is a simple 

algorithm with an upper bound on regret of (1 - 7)_1/2(1 + £) in the discounted 

case or (1 - n"1)~(n_1)n1/2(l + £) in the finite horizon case. This value is itself 

bounded above by nJ/2(e +1/2). In both cases, the upper bound on regret is within 

a constant factor of optimal. However, as we will see in Section 4.4, this algorithm 

is outperformed by many others in empirical tests. 

3.2    Learning Automata 

Another closely related field is that of learning automata. The phrase "learning 

automata" means, in this case, automata that learn to act in the world, as opposed 

to automata that learn the state-transition structures of other automata (as in 

Moore [51]). 

3.2.1    Early Work 

The first work in this area took place in the Soviet Union. An example of early 

learning-automaton work is the Tsetlin automaton, designed by M. L. Tsetlin [75]. 

The input set of the automaton is {0,1}, with 1 corresponding to the case when 

the agent receives reinforcement and 0 corresponding to the case when it does not. 

As in the BANDIT algorithm, there is no input corresponding to z, the information 

about the state of the world. The automaton has two possible actions, or outputs: 

0 and 1. The operation of the Tsetlin automaton is described in Figure 13. 

for every future time step, with only reinforcement as input. 
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Algorithm 2 (TSETLIN) 

a=0 a=l 

£0«—O«—0"«0«—O      O—K)»"0—K)—xSy 
1 2 3       N-l       N       2N    2N-1    N+3    N+2    N+l 

r=l 

a-0 a=l 

o—>o—►o»»» o—»cr^ ID«—O"»o*—o«—o 
1 2 3       N-l       N*2N     2N-1    N+3    N+2    N+l 

r = 0 

T/ie initial state can be any of the states, but would most reasonably be chosen to 
be state N or state 2N. All of the states on the left half of the graph evaluate to 
action 0 and on the right half of the graph to action 1. The state update operation 
consists of making one of the labeled transitions: when reinforcement has value 1, 
a transition to the left is taken if the action was 0 and to the right if the action was 
1; when the reinforcement has value 0, a right transition is taken if the action was 
0 and a left transition if the action was 1. Zero reinforcement values move the state 
toward the center and positive reinforcement values move the state toward the end 
corresponding to the action that was taken. 

Figure 13: The Tsetlin automaton 
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The Tsetlin automaton is parametrizable by the number, JV, of states between 

the center state and the ends of the chains going to the right and left. It can be 

shown that, if one of the actions has success probability greater than .5, then, as the 

value JV approaches infinity, the average reinforcement approaches the maximum 

success probability [53]. 

There are many other similar learning automata, some with better convergence 

properties than this one. The BANDIT algorithm can also be easily modeled as a 

finite-state machine. 

3.2.2    Probability-Vector Approaches 

As it is difficult to conceive of complex algorithms in terms of finite-state transition 

diagrams, the learning automata community moved to a new model, in which the 

internal state of the learning algorithm is a vector of non-negative numbers that 

sum to 1. The length of the vector corresponds to the number of possible actions of 

the agent. The agent chooses an action probabilistically, with the probability that 

it chooses the nth action equal to the nth element of the state vector. The problem, 

then, is one of updating the values in the state vector depending on the most recent 

action and its outcome. 

These and similar, related models were also independently developed by the 

mathematical psychology community [15] as models for human and animal learning. 

The most common of these approaches, called the linear reward-penalty algo- 

rithm, is shown in Figure 14. Whenever an action is chosen and succeeds, the 

probability of performing that action is increased in proportion to 1 minus its cur- 

rent probability; when an action is chosen and fails, the probability of performing 

the other action is increased in proportion to its current probability. The parame- 

ters a and b govern the amount of adjustment upon success and failure, respectively. 

An important specialization is the linear reward-inaction algorithm, also described 

in Figure 14, in which no adjustment is made to the probability vector when rein- 

forcement value 0 is received. 
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Algorithm 3 (LRP) The initial state, s0, consists of pi and p?, two positive real 
numbers such that pi + pz = 1. 

u(s,a, r) =   if a = 0 then 
ifr = 0 then 

Po := (1 - b)po 
else po:= po + api 

else 
ifr = 0 then 

Po-=Po + bpi 
else po := (1 - a)po 

pt := 1 - po 
( \ _ JO w^1 probability po 

with probability p\ 

Algorithm 4 (LRI) Any instance of Algorithm LRP in which b = 0. 

Figure 14: The linear reward-penalty (LRP) and linear reward-inaction (LRI) algo- 
rithms. 

The linear reward-penalty algorithm has asymptotic performance that is better 

than random (that is, it is expedient), but it is not optimal. It has no absorbing 

states, so it always executes the wrong action with some non-zero probability. The 

linear reward-inaction algorithm, on the other hand, has the absorbing states [1,0] 

and [0,1], because a probability is only ever increased if the corresponding action 

is taken and it succeeds. Once one of the probabilities goes to 0, that action will 

never be taken, so its probability can never be increased. The linear reward-inaction 

algorithm is e-optimal; that is, the parameter a can be chosen in order to make the 

probability of converging to the wrong absorbing state as small as desired. As the 

value of a is decreased, the probability of converging to the wrong state is decreased; 

however, the rate of convergence is also decreased. Theoreticians have been unable 

to derive a general formula that describes the probability of convergence to the 

wrong state as a function of a and the initial value of p\. This would be necessary 

in order to choose a to optimize reinforcement for runs of a certain length or with 

a certain discounting factor, as we did with k in the BANDIT algorithm above. 
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Algorithm 5 (TS) The initial state, s0, consists of the following 6 components: po 
and pi, which are positive real numbers such that Po + Pi = 1, and RQ = Ri = Z0 = 
Z1=0. 

u(s,a,r) =   d0 := RQ/Z0; ^ := R\ßx 

if a = 0 then begin 
if d0 > di then 

Po := po + X(do - di)pi 
else po:= po + X(d0 - di)pl 
Pi := 1-po 
iZo:=i2o + r 
Z0 := Z0 + 1 

end else begin 
if di > d0 then 

Pi-=Pi + A(di - do)po 
else pi := pi + X(di - do)p\ 
Po ■= 1 - Pi 
Rx :=R!+r 
Zx := Zj + 1 

end 
f \ _ JO to»<Ä probability po 

\\ with probability pj 

where 0 < X < 1 is a positive constant. 

Figure 15: The TS algorithm 

In addition to these linear approaches, a wide range of non-linear approaches 

have been proposed. One of the most promising is Thathachar and Sastry's method 

[74]. It is slightly divergent in form from the previous algorithms in that it keeps 

more state than simply the vector p of action probabilities. In addition, there is 

a vector d of estimates of the expected reinforcements of executing each action. 

Reinforcement values are assumed to be real values in the interval [0,1]. A simple 

two-action version of this algorithm is shown in Figure 15. 

The Rj are the summed reinforcement values for each action, the Zj are the 

number of times each action has been tried, and the dj are the average reinforcement 
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values for each action. The adjustment to the probability vector depends on the 

values of the dj rather than on the direct results of recent actions. This introduces 

a damping effect, because as long as, for instance, do > di, po will be increased, 

even if it has a few negative-reinforcement results during that time. 

The TS algorithm converges much faster than the linear algorithms LRP and 

LRI. One of the reasons may be that it naturally takes big steps in the parameter 

space when the actions are well differentiated (the difference between d0 and dx is 

large) and small steps when they are not. It has been shown that, for any stationary 

random environment, there is some value of A such that pi(n) —> 1 in probability2 as 

n —> oo, where pi(n) is the probability of executing the action that has the highest 

expected reinforcement [74]. 

3.3    Reinforcement-Comparison Methods 

One drawback of most of the algorithms that have been presented so far is that 

reinforcement values of 0 and 1 cause the same sized adjustment to the internal 

state independent of the expected reinforcement value. Sutton [70] addressed this 

problem with a new class of algorithms, called reinforcement-comparison methods. 

These methods work by estimating the expected reinforcement, then adjusting the 

internal parameters of the algorithm proportional to the difference between the 

actual and estimated reinforcement values. Thus, in an environment that tends to 

generate reinforcement value 1 quite frequently, receiving the value 1 will cause less 

adjustment that will be caused by receiving the value 0. 

An instance of the reward-comparison method, taken from Sutton's thesis [70], is 

shown in Figure 16. The internal state consists of the "weight" w, which is initialized 

to 0, and the predicted expected reinforcement, p, which is initialized to the first 

reinforcement value received. The output, e(s), has value 1 or 0 depending on the 

values of w and the random variable v. The addition of the random value causes 

the algorithm to "experiment" by occasionally performing actions that it would not 

2According to Narendra and Thathachar [53], "The sequence {Xn} of random variables converges 
in probability to the random variable X if for every € > 0, lim„_oo Pr{| Xn — X \> e} = 0." 
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Algorithm 6 (RC)  The internal state, s0) consists of the values w = 0 and p, 
which will be initialized to the first reinforcement value received. 

u(s,a,r)=      w := w + a(r -p)(a - 1/2) 
P := P + ß{r - p) 

0 e(s)= I 1   ifw + v> 
\ 0   otherwise 

where a > 0, 0 < ß < 1, and i/ is a normally distributed random variable of mean 
0 and standard deviation 6y. 

Figure 16: A reward-comparison (RC) algorithm. 

otherwise have taken. The state component w is incremented by a value with three 

terms. The first term, a, is a constant that represents the learning rate. The next 

term, r — p, represents the difference between the actual reinforcement received and 

the predicted reinforcement, p. This serves to normalize the reinforcement values: 

the absolute value of the reinforcement signal is not as important as its value relative 

to the average reinforcement that the agent has been receiving. The third term in 

the update function for w is a - 1/2; it has constant absolute value and the sign 

is used to encode which action was taken. The predicted reinforcement, p, is a 

weighted running average of the reinforcement values that have been received. 

3.4    Associative Methods 

The algorithms presented so far have addressed the case of reinforcement learning in 

environments that present only reinforcement values as input to the agent. A more 

general setting of the problem, called associative reinforcement learning, requires 

the agent to learn the best action for each of a possibly large number of input 

states. This section will describe three general approaches for converting simple 

reinforcement-learning algorithms to work in associative environments. The first 

is a simple copying strategy, and the second two are instances of a large class of 
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Algorithm 7 (COPY) Let (s0, u, e) be a learning behavior that has only reinforce- 
ment as input. We can construct a new learning behavior (s'0, u', t') with 2M inputs 
as follows: 

s'0   =   array [1..2MJ of s0 

u'(s', i,a, r)   =   u(s'[i],a,r) 

e'(s',i)   =   e(s'[i],a) 

Figure 17: Constructing an associative algorithm by making copies of a non- 
associative algorithm. 

associative reinforcement-learning methods developed by researchers working in the 

connectionist learning paradigm. Other approaches not described here include those 

of Minsky [48] and Widrow, Gupta, and Maitra [81]. Barto [9] gives a good overview 

of connectionist learning for control, including learning from reinforcement. 

3.4.1 Copying 

The simplest method for constructing an associative reinforcement-learner, shown 

in Figure 17, consists of making a copy of the state of the no-input version of the 

algorithm for each possible input and training each copy separately. It requires 2M 

(the number of different input states) times the storage of the original algorithm. 

In addition to being very computationally complex, the copying method does 

not allow for any generalization between input instances: that is, the agent cannot 

take advantage of the intuition that "similar" situations require "similar" responses. 

3.4.2 Linear Associators 

In his thesis [70], Sutton gives methods for converting standard reinforcement- 

learning algorithms to work in an associative setting in a way that allows an agent 

to learn efficiently and to generalize across input states. He uses a version of the 

Widrow-Hoff or Adaline [82] weight-update algorithm to associate different internal 

state values with different input situations. This approach is illustrated by the LARC 
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Algorithm 8 (LARC) The input is represented as an M-dimensional vector i. The 
internal state, sQ, consists of two M-dimensional vectors, v and w. 

u(s,i,a,r) =   let p := v • t 
for j = 1 to M do begin 

Wj := Wj + a(r - p)(a - l/2)ij 
Vj := VJ + ß{r - p)ij 

end 

e(si)= I 1   tfw-i + i/X) 
I 0   otherwise 

where a > 0, 0 < ß < 1, and u is a normally distributed random variable of mean 
0 and standard deviation 6y. 

Figure 18: The linear-associator reinforcement-comparison (LARC) algorithm. 

is an (linear-associator reinforcement-comparison) algorithm shown in Figure 18. It i 

extension of the RC algorithm to work in environments with multiple input states. 

The inputs to the algorithm are represented as M-dimensional vectors The out- 

put, e(s,i), has value 1 or 0 depending on the inner product of the weight vector 

w and i and the value of the random variable v. The updating of the vector w is 

somewhat complicated: each component is incremented by a value with four terms. 

The first term, a, is a constant that represents the learning rate. The next term, 

r — p, represents the difference between the actual reinforcement received and the 

predicted reinforcement, p. The predicted reinforcement, p, is generated using a 

standard linear associator that learns to associate input vectors with reinforcement 

values by setting the weights in vector v. The third term in the update function 

for w is a - 1/2: it has constant absolute value and the sign is used to encode 

which action was taken. The final term is »,-, which causes the j'th component of 

the weight vector to be adjusted in proportion to the jth value of the input. 
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Another instance of the linear-associator approach is Barto and Anandan's as- 

sociative reward-penalty (ARP) algorithm [7]. It is a hybrid of the linear reward- 

penalty and linear-associator methods and was shown (under a number of restric- 

tions, including the restriction that the set of input vectors be linearly independent) 

to be e-optimal. 

The linear-associator approach can be applied to any of the learning algorithms 

whose internal state consists of one or a small number of independently-interpretable 

numbers for each input. If the input set is encoded by bit strings, the linear- 

associator approach can achieve an exponential improvement in space over the copy 

approach, because the size of the state of the linear-associator is proportional to the 

number of input bits rather than to the number of inputs. This algorithm works well 

on simple problems, but algorithms of this type are incapable of learning functions 

that are not linearly separable [47]. 

3.4.3    Error Backpropagation 

To remedy the limitations of the linear-associator approach, multi-layer connection- 

ist learning methods have been adapted to reinforcement learning. Anderson [3], 

Werbos [79], and Munro [52], among others, have used error back-propagation 

methods3 with hidden units in order to allow reinforcement-learning systems to 

learn more complex action mappings. Williams [85] presents an analysis of the use 

of backpropagation in associative reinforcement-learning systems. He shows that a 

class of reinforcement-learning algorithms that use back-propagation (an instance 

of which is given below) perform gradient ascent search in the direction of maximal 

expected reinforcement. This technique is effective and allows considerably more 

generalization across input states, but it requires many more presentations of the 

data in order for the internal units to converge to the features that they need to 

detect in order to compute the overall function correctly. Barto and Jordan [10] 

demonstrate the use of a multi-layer version of the associative reward-penalty algo- 

rithm to learn non-linear functions. This method is argued to be more biologically 

3A good description of error back-propagation for supervised learning is given by Rumelhart, 
Hinton, and Williams [58]. 
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plausible than back-propagation, but requires considerably more presentations of 

the data. 

As an example of the application of error backpropagation methods to rein- 

forcement learning, Anderson's method [3] will be examined in more detail. It uses 

two networks: one for learning to predict reinforcement and one for learning which 

action to take. The weights in the action network are updated in proportion to 

the difference between actual and predicted reinforcement, making this an instance 

of the reinforcement-comparison method (discussed in Section 3.3 above). Each of 

the networks has two layers, with all of the hidden units connected to all of the 

inputs and all of the inputs and hidden units connected to the outputs. The system 

was designed to work in worlds with delayed reinforcement (which are discussed 

at greater length in Chapter 9), but it is easily simplified to work in our simpler 

domain. 

The BP algorithm is shown in Figures 19 and 20 and is explained in detail by 

Anderson [3]. The presentation here is simplified in a number of respects, however. 

In this version, there is no use of momentum and the term (a — 1/2) is used to 

indicate the choice of action rather than the more complex expression used by 

Anderson. Also, Anderson uses a different distribution for the random variable v. 

This method is theoretically able to learn very complex functions, but tends to 

require many training instances before it converges. The time and space complexity 

for this algorithm is O(MH), where M is the number of input bits and H is the 

number of hidden units. Also, this method is somewhat less robust than the more 

standard version of error back-propagation that learns from I/O pairs, because the 

error signal generated by the reinforcement-learning system is not always correct. 

3.5    Genetic Algorithms 

Genetic algorithms constitute a considerably different approach to the design and 

implementation of reinforcement-learning systems. This section will briefly describe 

the general approach and point to some representative applications of these methods 
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Algorithm 9 (BP) The input is represented as an M + 1-dimensional vector i, in 
which the last element contains a constant value. The internal state, s0, consists of 

WEH '' Weights of the hidden units in the evaluation network, an H by M + 1 
element array initialized to small random values. 

WEO •  Weights of the output unit in the evaluation network, an H + M + 1 element 
array initialized to small random values. 

WAH '  Weights of the hidden units in the action network, an H by M +1 element 
array initialized to small random values. 

WAO -  Weights of the output unit in the action network, an H + M + 1 element 
array initialized to small random values. 

In addition, the algorithm makes use of the following local variables 

OEH 
: Outputs of the hidden units in the evaluation network, an H element array. 

OAH ' Outputs of the hidden units in the action network, an H element array. 

p :  Output of the output unit in the evaluation network. 

Figure 19: An application of error backpropagation to reinforcement learning: data 
structures. 



3.5.   GENETIC ALGORITHMS 49 

Algorithm 9 (BP) (continued) 

u(s, i, a, r) =   for j = 1 to H do 
0EH[J]:=f(i-WEH[j]) 

p := WEo ' concat(i, OEH) 

for j = 1 to M + 1 do 
WEO{]\ := WE0[j] + ß(r-p) i\j] 

for j = 1 to H do 
WE0[j + M + 1] := WE0\j + M + l] + ß(r-p) 0EH[j] 

for j = 1 to H do begin 

d:=(r- p) sign(WEoL7 + M + 1]) 0EH[j] (1 - 0EH[j}) 
fork = ltoM + ldo 

WE„[j,k]:=ßhdi[k] 
end 
for j = 1 to M + 1 do 

WAO[j] := WA0[j\ + p (r - p) {a - 1/2) i\j] 
for j = 1 to H do 

WAO[j + M + 1] := WAO[j + M + l] + p{r-p)(a- 1/2) 0A„[j] 
for j = 1 to H do begin 

d:=(r- p) (a - 1/2) sign(W^0[j + M + 1]) 0AH\j] (1 - 0AH[j)) 
fork = \ to M + 1 do 

WAH[j,k] := phdi[k] 
end 

e(s, i) = for j = 1 to H do 
0AH[j] := F(i • WA„\j}) 

1   */ (WAO • concat(i, 0AH)) + v > 0 
0   otherwise I 

where ß,ßh,p,ph > 0, f(x) = 1/(1 + e~x), and v is a normally distributed random 
variable of mean 0 and standard deviation 6y. 

Figure 20: An application of error-backpropagation to reinforcement learning: up- 
date and evaluation functions 
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to reinforcement learning.  An excellent introduction to and survey of this field is 

given in Goldberg's book [29]. 

In their purest form, genetic algorithms (GA's) can be seen as a technique for 

solving optimization problems in which the elements of the solution space are coded 

as binary strings and in which there is a scalar objective function that can be used to 

compute the "fitness" of the solution represented by any string. The GA maintains 

a "population" of strings, which are initially chosen randomly. The fitness of each 

member of the population is calculated. Those with low fitness values are eliminated 

and members with high fitness values are reproduced in order to keep the population 

at a constant size. After the reproduction phase, operators are applied to introduce 

variation in the population. Common operators are crossover and mutation. In 

crossover, two population elements are chosen, at random, as operands. They are 

recombined by randomly choosing an index into the string and making two new 

strings, one that consists of the first part of the first string and the second part of 

the second string and one that consists of the first part of the second string and the 

second part of the first string. Mutation simply changes bits in population elements, 

with very low probability. 

A more complex type of GA is the classifier system [33]. Developed by Holland, 

it consists of a population of production rules, which are encoded as strings. The 

rules can be executed to implement an action function that maps external inputs 

to external actions. When the rules chain forward to cause an external action, 

a reinforcement value is received from the world. Holland developed a method, 

called the Bucket Brigade, for propagating reinforcement back along the chain of 

production rules that caused the action. This method is an instance of the class of 

temporal difference methods, which will be discussed further in Chapter 9. As a set 

of rules is run, each rule comes to have a relatively stable value which is used as its 

fitness. The standard genetic operations of reproduction, crossover, mutation, etc., 

are used to generate new populations of rules from old ones. 

Although classifier systems are reinforcement-learners, they are not well-suited 

for use in embedded systems. As with most production systems, there is no bound 
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on the number of rule-firings that will be required to generate an output in response 

to an input, preventing the algorithm's operation from being real-time. 

Grefenstette [30] has applied GA methods directly to the time-constrained prob- 

lem of learning action strategies from reinforcement. The elements of the population 

of his system are symbolic representations of action maps. The fitness of an element 

is determined by executing it in the world for a number of ticks and measuring the 

average reinforcement. Action maps that perform well are reproduced and recom- 

bined to generate new action maps. 

The GA approach works well on problems that can be effectively coded as syn- 

tactic objects in which the interpretation of individual elements is relatively context- 

independent and for which there are useful recombination operators. It is not yet 

clear what classes of problems can be so specified. An interesting extension of the 

research carried out in this dissertation would be to implement genetic algorithms 

for the problems considered and compare their performance with that of the algo- 

rithms tested herein. 

3.6    Extensions to the Model 

The algorithms of the previous sections have been presented in their simplest possi- 

ble forms, with only Boolean reinforcement as input and with two possible actions. 

It is a relatively simple matter to extend all of the algorithms except RC, LARC, and 

BP to the case of multiple actions. Because the details differ for each one, however, 

they shall be omitted from this discussion. The algorithms that choose an action by 

comparing an internal value plus noise to a threshold are more difficult to generalize 

in this way. 

The rest of this section will briefly detail extensions of these algorithms to work 

in domains with non-Boolean and nonstationary reinforcement. 



52 CHAPTER 3.   PREVIOUS APPROACHES 

3.6.1 Non-Boolean reinforcement 

Algorithms BANDIT and TSETLIN have no obvious extensions to the case of non- 

Boolean reinforcement. 

The learning-automata community considers three models of reinforcement: P, 

Q, and S. The P-model of reinforcement is the Boolean-reinforcement model we 

have already explored. In the Q-model, reinforcement is one of a finite number 

of possible values that are known ahead of time. These reinforcement values can 

always be scaled into values in the interval [0,1]. Finally, the 5-model allows real- 

valued reinforcement in the interval [0,1]. The notions of expediency and optimality 

can be extended to apply to the Q- and 5-models. 

Algorithms designed for P-model environments, such as the LRP and LRJ algo- 

rithms, can be adjusted to work in Q- and 5-models as follows. Let A,i0 be the 

change made to action-probability i when reinforcement 0 is received and let Atii 

be the change made when reinforcement value 1 is received. We can define, for the 

new models, A,ir, the change made when reinforcement value r is received as 

A,> = rAi.i + (1 - r)A,,0 , 

a simple linear combination of the updates for the old reinforcement cases [53]. 

Algorithm TS was designed to work in an 5-model of reinforcement and can be 

used in such environments without change. Algorithm RC, as well as the associative 

reinforcement-comparison algorithms LARC and BP, work in the more general case 

of real-valued reinforcement that is not necessarily scaled to fall in the interval [0,1]. 

3.6.2 Nonstationary environments 

A world is nonstationary if er(i, a) (the expected reinforcement of performing action 

a in input situation t) varies over time. It is very difficult to prove formal results 

about the performance of learning algorithms in nonstationary environments, but 

several observations can be made about which algorithms are likely to perform 

better in such environments. For instance, algorithms with absorbing states, such 

as BANDIT and LJU, are inappropriate for nonstationary environments: if the world 
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changes after the algorithm has converged, it will never sample the other actions and 

adjust its behavior to the changed environment. On the other hand, algorithms that 

are less effective in stationary environments, such as TSETLIN and LRP, continue to 

sample all of the actions and will adapt to changes in the environment. 

3.7    Conclusions 

A number of effective reinforcement-learning algorithms have been developed by 

different research communities. The work in this dissertation seeks to extend and 

improve upon the previous work by developing more effective learning methods 

and by finding approaches to associative reinforcement learning that are capable of 

learning a broader class of functions than the linear approaches can, but doing so 

more space-efficiently than the copy method and with fewer input instances than 

are required by the error backpropagation method. In addition, this dissertation 

will extend previous work on the problem of learning from delayed reinforcement. 



Chapter 4 

Interval Estimation Method 

The interval estimation method is a simple statistical algorithm for reinforcement 

learning. It is a logical extension of the statistical algorithms presented in the 

previous chapter. By allowing the state of the algorithm to encode not only esti- 

mates of the relative merits of the various actions, but also the degree of confidence 

that we have in those estimates, the interval estimation method builds on previous 

approaches by making it easier to control the tradeoff between acting to gain infor- 

mation and acting to gain reinforcement in a careful way. The interval estimation 

algorithm performs well on a variety of tasks and its basis in standard statistical 

methods makes it an illustrative example for formal analysis. 

This chapter presents the algorithm, together with an estimate of its expected 

error and experimental comparisons with many of the algorithms of Chapter 3. 

Next, it explores ways of extending the basic algorithm to deal with the more gen- 

eral learning models presented in Section 3.6. Finally, this chapter discusses the 

computational complexity of the interval-estimation algorithm and argues that it, 

along with other existing reinforcement-learning algorithms to which the linear- 

association or backpropagation methods cannot be directly applied, is too compu- 

tationally expensive for use in embedded systems. 

55 
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4.1    Description of the Algorithm 

The interval estimation method can be applied in a wide variety of environments; 

the simplest form will be presented first, and extensions to the basic algorithm will 

be described in Section 4.5. The basic interval estimation algorithm is formally 

described in Figure 21. The state consists of simple statistics: for each action 

a, na and xa are the number of times that the action has been executed and the 

number of those times that have resulted in reinforcement value 1, respectively. The 

evaluation function uses these statistics to compute, for each action, a confidence 

interval1 on the underlying probability, pa, of receiving reinforcement value 1 given 

that action a is executed. If n is the number of trials and x the number of successes 

arising from a series of Bernoulli trials 2 with probability p, the upper bound of a 

100(1 — a) percent confidence interval for p can be approximated by u6(x, n). 3 The 

evaluation function generates the action with the highest upper bound on expected 

reinforcement. 

Initially, each of the actions will have an upper bound of 1, and action 0 will 

be chosen arbitrarily. As more trials take place, the bounds will tighten. The in- 

terval estimation method balances acting to gain information with acting to gain 

reinforcement by taking advantage of the fact that there are two reasons that the 

upper bound for an action might be high: because there is little information about 

that action, causing the confidence interval to be large or because there is informa- 

tion that the action is good, causing the whole confidence interval to be high. The 

parameter za/2 is the value that will be exceeded by the value of a standard normal 

variable with probability a/2. 4 It controls the size of the confidence intervals and, 

thus, the relative weights given to acting to gain information and acting to gain 

reinforcement. As a increases, more instances of reinforcement value 0 are required 

1A 100(1 — a) percent confidence interval for a quantity is a range of values that, with probability 
1 — a, contains that quantity. 

2Bernoulli trials are a series of statistically independent events with binary outcomes that are 
generated by some fixed underlying probability. 

3This is a somewhat more complex form than usual, designed to give good results for small values 
ofn[36]. 

4Tables of this relationship can be found in most probability and statistics texts [36]. 
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Algorithm 10 (IE) The initial state, s0, consists of the integer variables x0, n0, 
x\, and n\, each initialized to 0. 

u(s,a,r) =   if a = 0 then begin 
xQ := x0 + r 

no := no + 1 
end else begin 

Xi := X\ + r 
rij := ni + 1 

end 
e(s) = if ub(xo,rio) > ub(xi,rii) then 

return 0 
else 

return 1 

where 

u , s+4?+5^te)(i-f)+% 
ub(x,n) =  

and zQ/2 > 0. 

Figure 21: The interval-estimation (IE) algorithm. 
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aOs aOt aOb als alt alb 

( 14 / 19) .88194 
( 81 / 138) .66567 
( 85 / 147) .65507 

( 0 / 1) .79346 
( 0 / 2) .65763 
(  0 /   3) .56151 

Figure 22: A sample run with po — .55, pi = .45, and zQ/2 = 1.96. In this case, it 
converges very quickly. 

to drive down the upper bound of the confidence intervals, causing more weight to 

be placed on acting to gain information. By the DeMoivre-Laplace theorem [36], 

these bounds will converge, in the limit, to the true underlying probability values, 

and, hence, if each action is continually attempted, this algorithm will converge to 

a function that satisfies Opt. 

In order to provide intuition about the workings of this algorithm, Figures 22 

and 23 show output from two sample runs in a simulated environment in which 

the actions a0 and a\ succeed with probabilities po and p\. The listings show the 

number of success and trials of do (the columns headed aOs and aOt), the upper 

bound on the confidence interval of po (the column headed aOb) and the same for 

ai and pi (columns headed als, alt, and alb). These statistics are just shown at 

interesting points during the run of the algorithm. In Figure 22, the first few trials 

of ax fail, causing the estimate of pi to be quite low; it will be executed a few more 

times, once the upper bound for po is driven near .56. The run shown in Figure 

23 is somewhat more characteristic. The two actions have similar probabilities of 

success, so it takes a long time for one to establish dominance. 

4.2    Analysis 

In order to analytically compare this algorithm with other algorithms, we would like 

to know the expected error of executing this algorithm in an environment specified 

by the action-success probabilities po and pi. This section informally derives an 

approximate expression for the expected error in terms of po, pi, and z0/2- 
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aOs aOt aOb als alt alb 

(  4 /   7) .84178 ( 1 / 3) .79235 
( 39 /  7S) .62931 ( 22 / 45) .62996 
( 226 / 394) .62150 ( 22 / 46) .61863 
( 358 / 631) .60549 ( 31 / 59) .64734 
( 963 / 1789) .56128 ( 52 / 111) .56080 
(5548 / 9888) .57084 ( 52 / 112) .55630 

Figure 23: Another sample run with po = .55, pi = .45, and za/2 = 1.96. This time, 
the two actions battle for a long time, but üQ is clearly winning after 10,000 trials. 

Regular Error 

For concreteness, let us assume that po > Pi- An error occurs every time a,\ is 

executed, and we expect it to be executed a number of times that is sufficient to 

drive the upper bound of p\ below the actual value of po- We can compute this 

expected number of errors by setting the expected value of the upper bound on px 

equal to po and solving for ni. The expected value of the upper bound on pi is 

approximately5 the upper bound with the number of successes set to nipi. This 

allows us to solve the equation ub{p,iPi, ni) = po for n1? yielding 

2a/aPo(l - Po) 

(Po ~ Pi)2 

As po and pi grow close, na goes to infinity. This is as it should be—it becomes 

infinitely hard to tell which of the two actions is better. We can simplify this 

expression further by abstracting away from the actual values of po and pi and 

considering their difference, 6, instead. For probabilities with a fixed difference, ni 

is maximized by setting pj to .5 and po to .5 + 8. Making this simplification, we can 

bound Ti\ above by 

462  ' 
This is an approximate upper bound on the expected number of errors that will be 

made on a run of infinite length. The amount of error can be obtained simply by 

5This is only an approximation because ni occurs inside a square-root, which does not commute 
with the expectation operator. 
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error 

Figure 24: Expected regular error on an infinite run as a function of 6, with zQ/2 
1.96. 

multiplying by £, the magnitude of the error, yielding 

46  ' 

which is plotted as a function of 6 in Figure 24. 

This result is somewhat disturbing, because the amount of error on an infinitely 

long run can be made arbitrarily large by making 6 arbitrarily small. However, it is 

possible to bound the amount of error on a finite run of length m. The maximum 

expected number of errors that could be made on such a run is m/2 (when the two 

probabilities are equal, we expect to perform the actions equal numbers of times). 

The number of errors is monotonically decreasing in 6, so we can easily find the 

largest value of 6 that could cause this many errors by solving the equation 

m 

462 

for 8, getting -pr-- Thus, the maximum expected regular error on a run of length 

m would be 
Zy/in 
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aOs aOt aOb als alt alb 

( 0 / 2) .65763 

( 0 / 3) .56151 
( 1 / 4) .69936 

( 16 / 34) .63264 

( 4 / 8) .78479 
( 67 / 137) .57191 
( 70 / 146) .55997 
( 78 / 176) .51701 

Figure 25: A sample run with po = .55, pi = .45, and za/2 = 1.96. The first action 
almost gets stuck. 

obtained by multiplying the maximum number of errors, m/2, by the maximum 

magnitude of the error. This maximum regular error is O^m1^2), which means that 

the interval estimation algorithm, like the BANDIT algorithm, performs within a 

constant factor of optimal when the environment is as hostile as possible. 

Error Due to Sticking 

The analysis of the previous section was all carried out under the assumption that 

the action a0 would be executed an infinite number of times during an infinite run. 

Unfortunately, this is not always the case—it is possible for a0 to get stuck below aj 

in the following way. If there is a statistically unlikely series of trials of aQ that cause 

the upper bound on po to go below the actual value of pj, then it is very likely that 

do will never be executed again. When this happens, we shall say that do is stuck. 

A consequence of CLQ being stuck is that errors will be made for the remainder of the 

run. The process of sticking is illustrated by two sample runs. In Figure 25, there 

is an early series of failures for a0, causing ai to be dominant. However, because 

the upper bound on po was not driven below p\, the upper bound on p\ eventually 

goes down far enough to cause more trials of a0, which bring its upper bound back 

up. The run shown in Figure 26 is a case of permanent sticking. After 0 successes 

in 5 trials, the upper bound on the confidence interval for po is less than pl5 causing 

CL\ to be executed for the remainder of the run. 

By assuming that once ao becomes stuck below a.\ it never becomes unstuck, we 

can bound expected error due to sticking on a run in which a0 would be executed 
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aOs aOt aOb als alt alb 

(  o / 2) .65763 ( 0 / 1) .79346 
(  o / 3) .56151 ( 11 / 24) .64925 
(  o / 4) .48990 ( 57 / 121) .55953 
(  o / 5) .43449 ( 108 / 253) .48847 
(  o / 5) .43449 ( 132 / 300) .49658 

Figure 26: A sample run with po = -55, pi = .45, and za/2 = 1.96. Here, the first 
action really does get stuck below the second. 

T times, if unstuck, by 

T 

£]Pr(u&(:ro,tf) first goes below pi at time <)(T - t)(po - pi)  . 
t=i 

It is the sum, over all time steps t on which a0 is executed, of the probability that 

a0 first gets stuck at time t times the number of time steps that remain, (T - t), 

times the magnitude of the error, (po - Pi). By solving for x0, we can transform the 
constraint that ub(x0,t) < pj into 

x0 < tpi - Za/2\/tpi(l - Pi) 

Now we must compute the probability that xQ first goes below some function 

f(t) at time t. The sequence of values taken on by x0 over time can be modeled as 

a 0-1 random walk, with x0(t) the value taken on by the walk at time t. Figure 27 

depicts the function / and process x0. Letting k = [/(<)J, the probability that x0 

first goes below / at time t is the product of the probabilities that x0(t) = k and 

that x0 never goes below / before time t. The first probability is simply 

(9*S<i -*)-» 

We can approximate the probability that x0 never goes below / before time t by 

substituting for / the line 7 that goes through the point {t, k) with slope /'(<). This 

line is approximately tangent to f(t). The probability that x0 never goes below / 

before time t can be approximated by constructing a new random walk problem as 
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fit)       l(t) 

Figure 27: The random walk xQ(t) and function f(t). 

shown in Figure 28. The origin is the point {t, k) and the coordinates run backward 

in each direction. The process x^ is a 0-1 random walk with probability k/t of getting 

a 1, and the line / is the same as before. The probability that a 0-1 random walk 

ever hits a line through the origin is approximately p/m where p is the probability 

of getting a 1 in the random walk and m is the slope of the line [38]. Thus, the 

probability that x% never hits the line is 1 - k/(tf'(t)). 

So, our final (approximate) answer for the probability that x0 first goes below 

*Pi - zytPi(l - Pi) at time t (called sp(t) for sticking probability at time t) is 

sp(t) =    1 - 
t(Pi ~ |za/2vWl-Pi)A)/ \k. 

Pko(l-PoY-k , 

where k = [tpx - z^y/tp^l - Pl)\. 
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0 

Figure 28: New random walk in inverted coordinate system. 

Total Error 

An approximate upper bound on the total expected error on a run of length T can 

finally be expressed as the sum of the regular and sticking error: 

Zo/2 

4(A)-Pi) 
+ j>p(0(tf-0(Pb-Pi) • 

*=i 

The sticking error is summed to T', the expected number of times a0 will be exe- 

cuted, which is T — 4, "^ y There has not yet been any discussion of appropriate 

values for z0/2 to take on. It determines the size of the confidence interval and, 

therefore, the number of trials it takes to drive an upper bound below a certain 

value. Thus, regular error increases as za/2 increases and the interval gets larger. 

As za/2 increases, the height of /(<) decreases, making it less likely that x0 
w"l go 

below. Thus, error due to sticking decreases as za/2 increases. This tradeoff is illus- 

trated in Figure 29, which plots regular error and error due to sticking as functions 

Of *a/2- 

If we had any o prior; expectations (and had some idea how to usefully approxi- 

mate the monstrous form for expected error as a closed form) about the underlying 

values of po and p\, we could choose zaji to minimize expected error. 
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error 

2 4 6 8 10 

Figure 29: Expected regular error and sticking error plotted as a function of zQ/2. 

4.3    Empirical Results 

The approximations of the previous section were tested by comparing predicted 

results against actual results of the interval estimation algorithm in a simulated 

world. The algorithm was executed for 6 ranging, in increments of .05, from .05 

to .6, with pi and & equally spaced about .5 (for 6 = .1, pi = .55 and p2 = .45.) 

For each value of S, 1079 runs of length 10,000 were conducted. The variable za/2 

had value 1.96 throughout. Figure 30 contains a plot, for each 6, of the mean error 

of the runs that did not stick, together with the predicted error. The predictions 

seem to be fairly accurate for regular error. Figure 31 shows the mean error due to 

sticking for each 8, along with the predicted values. This prediction is somewhat 

less accurate. Nonetheless, these results are encouraging, because we can see that, 

in these cases, the total expected error is quite small—less than 50 fewer instants of 

reinforcement value 1 than expected from the optimal algorithm for runs of length 

10,000. 
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regular error 

0.2 0.4 0.6 0.8 

Figure 30: Regular error as a function of 6; dots indicate the mean regular error on 
1079 runs of length 10,000; the curve is predicted error. 

sticking error 

5 Ot 

40- 

30- 

20 

10" 

0.3 0.4       0.5 0.6 

Figure 31: Error due to sticking as a function of 8; dots indicate the mean error 
due to sticking on 1079 runs of length 10,000; the curve is predicted error. 
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Task Po Pi 
1 .9 .1 
2 .6 .4 
3 .9 .8 
4 .2 .1 

Table 1: Parameters of test environments. 

4.4    Experimental Comparisons 

This section reports the results of a set of experiments designed to compare the per- 

formance of the interval estimation algorithm with a number of the most promising 

reinforcement-learning algorithms. 

4.4.1    Algorithms and Environments 

The following algorithms were compared in these experiments: 

• BANDIT (described in Figure 12) 

• LRP (described in Figure 14) 

• LRI (described in Figure 14) 

• TS (described in Figure 15) 

• RC (described in Figure 16) 

• IE (described in Figure 21) 

Each of the algorithms was tested in four different environments. The environ- 

ments generate Boolean reinforcement, with positive reinforcement resulting with 

probability po after doing action aQ and with probability pi after doing action ai. 

Table 1 shows the values of po and p\ for each environment. 
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ALG-TASK 12      3      4 
BANDIT(fc) 1     12     10     10 
LRP (a) .60    .60   .30    .40 
LRI (a) .55     .1    .05    .15 
TS(A) .30   .20   .20    .35 
RC (a) .40   .30   .15    .50 

IE (za/2) 3.0   2.0   3.0   2.0 

Table 2: Best parameter value for each algorithm in each environment. 

4.4.2    Parameter Tuning 

Each of the algorithms has a single parameter that can be chosen to make the 

algorithm more or less conservative;6 the best choice of value for these parameters 

typically depends on the length of the run, because it is more important to insure 

that an absorbing algorithm converges to the correct action on a long run. For 

each algorithm and environment, a series of 100 trials of length 1000 were run with 

different values of the parameter. Table 2 shows the best parameter value found for 

each algorithm and environment pair. 

Although these experiments are illuminating, in actual applications we will typ- 

ically want to apply these algorithms to situations in which the underlying proba- 

bilities are not known or there is not enough time to make many runs with different 

parameter values. In such situations, an algorithm that performs well over a wide 

range of problems with the same parameter value is to be preferred over one that 

performs well when the parameter is chosen exactly appropriately for the problem, 

but poorly otherwise. As we can see in Table 2, the interval estimation algorithm 

operates at its best in all of these problems with a z0/2 value between 2 and 3— 

this roughly corresponds to using 95 or 99 percent confidence intervals, values that, 

interestingly, are often used by human decision-makers. 

€ Actually, RC also has parameters ß and a, but following the author [70], these parameters were 
held constant at .1 and .3, respectively. 
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ALG-TASK 1 2 3    4 

BANDIT .8982 .5856 .8892 .1888 

LRP .8172 .5190 .8665 .1521 

LRJ .8911 .5872 .8780 .1934 
TS .8979 .5893 .8941 .1870 
RC .8988 .5890 .8897 .1930 

IE .9004 .5953 .8937 .1972 

random .5000 .5000 .8500 .1500 
optimal .9000 .6000 .9000 .2000 

Table 3: Average reinforcement over 100 runs of length 1000. 

4.4.3    Results 

After choosing the best parameter value for each algorithm and environment, the 

performance of the algorithms was compared on runs of length 1000. The perfor- 

mance metric was average reinforcement per tick, averaged over the entire run. The 

results are shown in Table 3. These results do not tell the entire story, however. 

It is important to test for statistical significance to be relatively sure that the or- 

dering of one algorithm over another did not arise by chance. Figure 32 shows, for 

each task, a pictorial representation of the results of a 1-sided t-test applied to each 

pair of experimental results. The graphs encode a partial order of significant dom- 

inance, with solid lines representing significance at the .95 level and dashed lines 

representing significance at the .85 level. We can see that the interval-estimation 

algorithm dominates in nearly every task. On Task 3 its average reinforcement 

value was slightly lower than that of the TS algorithm, but this difference was not 

significant. The LRP algorithm is, as expected, uniformly sub-optimal, and the rest 

of the algorithms perform about the same at quite a high level. 

Another view of the relative performance of the algorithms is given by examining 

their learning curves. A learning curve is a plot of expected reinforcement values 

versus time, which shows the rate of performance improvement. Figures 33, 34, 35, 

and 36 contain, for each task, the superimposed learning curves of each algorithm for 

that task. Each point represents the average reinforcement received over a sequence 

of 50 ticks, averaged over 100 runs of length 1000. For Tasks 1 and 2, the curves 
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TASK1 TASK 2 

TASK 4 

LRP 
LRP 

Figure 32: Significant dominance partial order among algorithms for each task. 
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Figure 33: Learning curves for Task 1. 

are hard to differentiate; the labels on the right hand sides of the graphs indicates 

the average relative performance of the algorithms on the first sample of 50 ticks. 

4.5    Extensions 

As with the algorithms of Chapter 3, the interval estimation algorithm can be 

extended to work in more complex environments. All of the extensions described 

in this section have been implemented and tested in simulated environments. 

4.5.1    Multiple Inputs and Actions 

The interval estimation algorithm is directly generalizable to multiple actions. Statis- 

tics are collected for each action and are used to construct upper bounds. The action 

with the highest upper bound is chosen to be executed at each tick. 

There is no specific way to tailor the interval estimation algorithm to work in 

situations where there are multiple input states. The method of making a copy of 

the internal state for each possible input situation can be applied to the interval 

estimation algorithm, but because there is more than a single number associated 
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Figure 34: Learning curves for Task 2. 
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Figure 35: Learning curves for Task 3. 
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Figure 36: Learning curves for Task 4. 

with each input state, it would be difficult to apply the linear association or error 

backpropagation methods. 

4.5.2    Real-valued Reinforcement 

Rather than thinking of choosing the action with the highest probability of succeed- 

ing, we can think of choosing the action with the highest expected reinforcement. 

Under this view, the interval estimation process can be applied to the expected 

value of reinforcement given that the action a is executed in situation z. If the re- 

inforcement for each tick is binomially distributed with parameter p, this is exactly 

what is taking place in the version of the algorithm presented in Section 4.1. 

Simple extensions can be made if a different probabilistic distribution underlies 

the reinforcement associated with taking action. In order to handle real-valued 

reinforcement, for example, we can apply the following two methods: assume the 

normal distribution or use non-parametric statistics. 

If the reinforcement values are normally distributed, we can use standard statis- 

tical methods to construct a confidence interval for the expected value. In order to 

do this, we must keep the following statistics: n, the number of trials, £ xi the sum 

of the reinforcement received so far, and J^x2, the sum of squares of the individual 
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reinforcement values.  The upper bound of a 100(1 — a) % confidence interval for 

the mean of the distribution can be computed by 

nub(n, J2x^x2) = y + ta/l^-fc 

where y = x/n is the sample mean, 

nEs2-(E*)2 

\       n(n - 1) 

is the sample standard deviation, and t^L is Student's t function with n — 1 degrees 

of freedom [69]. Other than using a different statistical method to compute the 

upper bound of the expected reinforcement, the algorithm remains the same. 

Even when the reinforcement values cannot be assumed to be normally dis- 

tributed, the interval estimation algorithm can be implemented using simple non- 

parametric statistics.7 In this case, it is not possible to derive an upper bound 

on expected value from summary statistics, so we must keep the individual rein- 

forcement values. Obviously, it is impossible to store them all, so only the data in 

a sliding window are kept. The non-parametric version of the interval estimation 

algorithm requires another parameter, w, that determines the size of the window 

of data. The data are kept sorted by value as well as by time received. The upper 

bound of a 100(1 — a) % confidence interval for the center of the underlying distri- 

bution (whatever it may be) can be calculated, using the ordinary sign test [26], to 

be the (n — tx)th element of the sorted data, if they are labelled, starting at 1, from 

smallest to largest, where n is minimum of w and the number of instances received. 

The value u is chosen to be the largest value such that 

For large values of n, u can be approximated using the normal distribution. 
7Non-parametric methods tend to work poorly when there are a small number of discrete values 

with very different magnitudes. Practical results have been obtained in such cases by using methods 
for the normal distribution with the modification that each action is performed at least a certain 
fixed number of times. This prevents the sample variance from going to 0 on small samples with 
identical values. 
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4.5.3    Non-stationary environments 

The basic version of the interval estimation algorithm can converge to absorbing 

states and, as noted in Section 3.6.2, that makes it inappropriate for use in non- 

stationary environments. One way to modify the algorithm in order to fix this 

problem is to decay all of the statistics associated with a particular input value by 

some value d less than, but typically near, 1, whenever that input value is received. 

This decaying will have the effect that the recorded number of trials of an action 

that is not being executed decreases over time, causing the confidence interval to 

grow, the upper bound to increase, and the neglected action to be executed again. 

If its underlying expected value has increased, that will be revealed when the action 

is executed and it may come to be the dominant action. 

This technique may be similarly applied when using statistical methods for 

normally-distributed reinforcement values. The non-parametric method described 

above is already partially suited to non-stationary environments because old data 

only has a finite period of influence (of length tu) on the choices of the algorithm. 

It can be made more responsive to environmental changes by occasionally dropping 

a data point from the list of an action that is not being executed. This will cause 

the upper bound to increase, eventually forcing the action to be executed again. 

Another method of changing an algorithm to work in non-stationary environ- 

ments is to choose the "wrong action" (one that would not have been chosen by the 

algorithm) with probability 1/n, where n is the number of trials that have taken 

place so far. As time passes, it becomes less and less likely to do an action that is 

not prescribed by the current learned policy, but executing these "wrong" actions 

ensures that if they have become "right" due to changes in the environment, the 

algorithm will adapt. This method is more suited to situations in which environ- 

mental changes are expected to be more likely to happen early in a run, rather than 

later. 
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4.6    Applicability of this Algorithm 

The interval estimation algorithm is of theoretical interest because of its simplicity 

and its direct ties to standard statistical methods. It also performs slightly better 

than many proposed reinforcement-learning algorithms. However, this algorithm, 

as well as other reinforcement-learning algorithms that require copies of the state for 

each possible input, is fundamentally unsuitable for learning in embedded systems 

because of its high computational complexity and lack of generalization. 

Except for the linear-association and error-backpropagation algorithms, all of 

the other algorithms we have examined require time at least proportional to the 

number of possible actions, and space proportional to the product of the number of 

inputs and the number of actions. As we begin to apply these algorithms to real- 

world problems, their time and space requirements will make them unpractically 

slow. A driving factor in the rest of this dissertation is the need for reinforcement- 

learning algorithms with lower time and space complexity, ideally proportional to 

the logarithms of the numbers of inputs and actions. 

In addition, the interval estimation algorithm completely compartmentalizes 

the information it has about individual input situations. If it learns to perform a 

particular action in one input situation, that has no influence on what it will do in 

similar input situations. In realistic environments, an agent cannot expect ever to 

encounter all of the input situations, let alone have enough experience with each one 

to learn the appropriate response. Thus, it is important to develop algorithms that 

will generalize across input situations. Generalization is a dangerous thing, however; 

too much generalization defeats the learning of very complex action functions. 

It is possible to modify the interval-estimation algorithm in order to support 

some degree of generalization across input situations. Instead of simply using the 

upper bound on expected value of an action a in a situation t, it is possible, instead, 

to compute a kind of average based on the results of performing action a in situations 

similar to i, with "nearer" situations weighted more heavily than those farther 

away. This technique requires a measure on the nearness of input situations to one 

another and is no longer directly grounded in statistical theory. By addressing the 
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generalization issue in this way, however, we increase the computation time of the 

algorithm, for now it requires evaluating action a in a number of input situations. 

This only adds a constant factor that depends on the number of neighbors that are 

used, but it just makes a bad situation worse. 

The interval-estimation method might be made both more computationally effi- 

cient and able to generalize across situations by using associative methods (such as 

linear association or backpropagation) to store each of the components of the state 

for an input-action pair. The statistical foundations of such an approach would be 

weak, potentially causing a number of problems. 

It is important to note, however, that in order to find more efficient algorithms, 

we must give up something. What we will be giving up is the possibility of learning 

any arbitrary action mapping. In the worst case, the only way to represent a 

mapping is as a complete look-up table, which is what the multiple-input version 

of the interval-estimation algorithm does. There are many useful and interesting 

functions that can be represented much more efficiently, and the remainder of this 

work will rest on the hope and expectation that an agent can learn to act effectively 

in interesting environments without needing action maps of pathological complexity. 



Chapter 5 

Divide and Conquer 

Because we wish to reduce the complexity of learning algorithms to be proportional 

to the logarithms of the numbers of inputs and outputs, it is useful to think of the 

inputs and outputs as being encoded in some binary code. The problem, then, is 

one of constructing a function that maps a number of input bits to a number of 

output bits. If we can construct algorithms that effectively learn interesting classes 

of functions with time and space complexity that is polynomial in the number of 

input and output bits, we will have improved upon the previous group of algorithms. 

Having decided to view the problem as one of learning a mapping from many 

input bits to many output bits, we can reduce this problem to the problem of 

learning a mapping from many input bits to one output bit. This chapter discusses 

such a problem reduction, first describing it informally, then proving its correctness. 

It concludes with an application of the reduction method to a complex learning 

problem. 

5.1    Boolean-Function Learners 

A Boolean-function learner (BFL) is a reinforcement-learning behavior that learns 

a mapping from many input bits to one output bit. It has the same input-output 

structure as any of the algorithms discussed so far, but is limited to having only 

two actions.   We can describe a BFL with k input bits in the general form of a 
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i BFL0 

BFL, 
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I BFL, w 

Figure 37: A cascaded learner constructed from BFL's. 

learning behavior where l0,Jt is the initial state, ü* is the update function and e* is 

the evaluation function. 

A BFL is correct if and only if whenever it chooses an action a in situation 

i, er(i,a) > er(i,-ia). That is, it always chooses the action that has the higher 

expected reinforcement. 

5.2    Cascade Algorithm 

We can construct an algorithm that learns an action map with N output bits by 

using N copies of a Boolean-function learning algorithm, one dedicated to learning 

the function corresponding to each individual output bit. If we do this in the 

simplest way, it will not work correctly: when the collection of BFL's generates 

an output pattern that does not result in positive reinforcement, it is difficult to 

know whose fault it was. Perhaps only one of the bits was "wrong." To avoid 

this problem, often referred to the as "structural credit assignment" problem, we 

construct a learning algorithm (as shown in Figure 37) from N cascaded BFL's. The 

BFL dedicated to learning to generate the first output bit (referred to as BFL0) has 
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Algorithm 11 (^CASCADE,) 

So   =   array of So,Af+j where j goes from 0 to N — 1 
u(s,i,a,r)   =   forj:=0toN — l 

«M+i(*[;], conca<(t',a[0...7 - l]),a[j],r) 

e(/i, i)   =    for j :=0 to N -1 

a[j] •= c*f+i(*[y], conca<(i, a[0.. j - 1])) 
return a 

Figure 38: The CASCADE algorithm. 

the M real input bits as input. The next one, BFL1? has the M real inputs as well 

as the output of BFL0 as input. In general, BFLjt will have M + k bits of input, 

corresponding to the real inputs and the outputs of the Jb lower-numbered BFL's. 

Each one learns what its output bit should be, given the input situation and the 

values of the output bits of the lower-numbered BFL's. 

The cascade algorithm can be described as a learning behavior as shown in 

Figure 38. The complexity of this algorithm can be expressed as a function of the 

complexity of the component BFL's, letting 5(s0,it) be the size of the initial state 

of a BFL with k inputs, T(üjt) be the time for the BFL update function on k input 

bits, and T(e*) be the time for the BFL evaluation function with k input bits. For 

the entire cascade algorithm with M input bits and N output bits, the size of the 

state is 

O(E%M+J)) , 
3=0 

which reduces to 

the time for an update is 

and the time for an evaluation is 

0(N S(SOM+N)) ; 

0(NT(uM+N)) ; 

0(NT(eM+N)) • 
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Given efficient algorithms for implementing the BFL's, the cascade method can 

construct an efficient algorithm for learning functions with any number of output 

bits.1 

This efficiency comes at a price, however. Even if there is no noise in the 

environment, a mistake made on bit j will cause the reinforcement information for 

bits 0 through j — 1 to be in error. To see this, consider the case of two output bits. 

Given input instance i, bit 0 is generated to have the value 1; then, bit 1 is generated, 

as a function of both i and the value of bit 0, to have the value 0. If the correct 

response in this case was {1,1}, then each of the bits will be given low reinforcement 

values, even though bit 0 was correct. This brings to light another requirement of 

the BFLs: they must work correctly in nonstationary environments. As the higher- 

numbered BFL's are in the process of converging, the lower-numbered ones will be 

getting reinforcement values that are not necessarily indicative of how well they are 

performing. Once the higher-numbered BFL's have converged, the lower-numbered 

BFL's must be able to disregard their earlier training and learn to act correctly 

given the functions that the higher-numbered BFL's are now implementing. 

5.3    Correctness and Convergence 

In order to show that this algorithm works, we must demonstrate two points. First, 

that if the component BFL's converge to correct behavior then the behavior of 

the entire construction will be correct. Second, that the component BFL's are 

trained in a way that guarantees that they will converge to correct behavior. These 

requirements will be referred to as correctness and convergence. 

5.3.1    Correctness 

This section presents a proof that the cascade construction is correct for the case 

of two output bits. A similar proof can be constructed for cases with any number 

of bits.  Assume that the two BFL's have already converged, the first one to the 

1This assumes that S(so,k), T(ük), and T(et) are all monotonically non-decreasing in ib. 
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function /0, and the second to the function fx. The following formula asserts that 

the function /0 is correct, given the choice of fx: 

Vt. er(/o(i)l/1(f,/o(i))) > er(-./o(t)f/1(i,-i/o(i))) ; (1) 

that is, that for any value of the input i, it is better for the first bit to have the 

value /o(t) than its opposite. Similarly, we can assert that the function /i is correct: 

Vt\ b. er(6, /,(*, b)) > er(b, -i/,(», 6)) ; (2) 

that is, that for any value of input i and first bit 6 (b is the output of f0 in the 

cascade), it is better that the second bit have the value fx(i, b) than its opposite. 

We would like to show that the composite output of the cascade algorithm is 

correct: that is, that for any input, no two-bit output has higher expected rein- 

forcement than the one that is actually chosen by f0 and fx. This can be stated 

formally as the following conjunction: 

Vi.cr(/o(i),/,(«,/o(0))   >   «■(-/o(t),/1(i,/o(i))) A (3) 

Vi.cr(/o(i),/,(t,/o(i)))   >   er(/o(iWi(i,/o(i))) A (4) 

Vi.cr(/o(i),/i(i,/o(OJ)   >   er(-/o(0,i/1(il/o(i))) . (5) 

The first conjunct, 3, can be shown with a proof by cases. In the first case, given 

input i, function fx is insensitive to its second argument: that is, /a(i, x) = /a(i, -ix). 

In this case, 

er(-/o(i),/i(*,/o(*))) = eK-/o(0,/i(*Wo(0)) 5 (6) 

from 6 and assumption 1 we can conclude that 

er(fo(i)Ji(iJo(i))) > er(-./o(i),/1(iI/o(0)) • 

In the second case, function fx is sensitive to its second argument when the first 

argument has value i; that is, fi(i,x) = -i/i(t,-ia:). In this case, 

er(-"/o(0,/i(«\/o(0)) = er(-./o(i),-./i(»,-/o(i))) • (7) 

Combining assumptions 1 and 2, we can derive 

er(/o(*),/i(«\/o(0)) > er(--/o(i),-./!(.', i/o(0)) • (8) 
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From 7 and 8, we have our desired conclusion, that 

er(/o(t),/i(i,/o(*))) > er(-i/o(0,/i(i,/o(t))) • 

The second conjunct, 4, follows directly from assumption 2. 

The third conjunct, 5, also requires a proof based on the same cases used in the 

proof of the first conjunct. In the first case, /a(i,x) = fi(i,->x), so 

cr(-i/o(0. -*(«, /o(0)) = er(-./o(0, --/i(«, -/o(0)) • (9) 

From 9 and result 8 above, we can derive 

er(/o(0>/i(*\/o(»'))) > er(i/o(t),-./,(i,/o(t))) • 

In the second case, fi(i,x) = ->/i(i,-ur), so 

cr(-n/0(i), -»/i(t, /o(*))) = cr(i/o(i), /i(*\ ^/o(0)) • 

Combining this result with assumption 1, we get the desired result, that 

er(/o(«),/i(*\/o(0)) > er(-/o(0,-/i(i,/o(0)) • 

Thus, we can see that local assumptions of correctness for each BFL are sufficient 

to guarantee global correctness of the entire cascade algorithm. 

5.3.2    Convergence 

Now, we must show that the BFL's are trained in a way that justifies assumptions 1 

and 2 above. It is difficult to make this argument precise without making very strong 

assumptions about the BFL's and the environment. Informally, the argument is as 

follows. The highest-numbered BFL (BFL;v) always gets correct reinforcement and 

so converges to the correct strategy; this is because, independent of what the lower- 

numbered BFL's are doing, it can learn always to make the best of a bad situation. 

Once this has happened, BFL^_i will get correct reinforcement; because its internal 

learning algorithm works in non-stationary environments, it will converge to behave 
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in the best way it can in light of what BFL# does (which now is correct).   This 

argument can be made all the way up to BFL0. 

In general, the convergence process may work somewhat differently. Conver- 

gence happens on an input-by-input basis, because there is no guarantee that the 

whole input space will be explored during any finite prefix of a run of the agent. 

Rather, an input comes in from the world and all the BFL's except BFL^r generate 

their output bits. This constitutes a learning instance for BFLjv, which can gain 

information about what to do in this situation. After this situation has occurred a 

few times, BFLjv will converge for that input situation (including the bits generated 

by the lower-numbered BFL's). As the lower-numbered BFL's begin to change their 

behavior, they may generate output patterns that BFL# has never seen, requiring 

BFLjv to learn what to do in that situation before the lower-numbered BFL's can 

continue their learning process. 

5.4    Example 

As a simple illustration of the cascade reduction method, this section outlines its use, 

in conjunction with the interval estimation algorithm, to solve a complex learning 

problem. As a baseline for comparison, we also consider the use of the interval 

estimation algorithm in conjunction with the method of adding extra copies of the 

basic statistical algorithm to handle multiple actions. These two methods will be 

compared in terms of computational complexity and performance on the learning 

problem. 

5.4.1    Complexity 

If there are M input bits and N output bits, the space complexity of an instance of 

the interval estimation algorithm with a copy of the basic algorithm for each input- 

action pair is 0(2M+N). The cascade method requires N copies of the algorithm, 

each with 1 output bit and up to M + TV — 1 input bits. The total space requirement 
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for the cascade algorithm would, in this case, be 0(N2M+N), which is worse than 

using the simple copying method. 

The time complexity of an update operation (if indexing is ignored) is constant 

for the copying method; the cascade method requires each component BFL to be 

updated, using 0(N) time. 

The time complexity of an evaluation using the simple copying method is 0(2^), 

because each possible action must be evaluated. Using the cascade method, however, 

it is 0(N)t because only 2 actions must be evaluated for each output bit. 

Each cycle of a learning behavior requires one update and one evaluation: for the 

copying method this requires 0(1) + 0(2^) = 0(2N) time; for the cascade method 

it requires 0(N) + 0(N) = 0(N) time. Thus, the space complexity is somewhat 

greater using the cascade method, but computation time is considerably shorter. 

5.4.2    Performance 

A moderately complex reinforcement-learning problem is that of learning to be an 

n-bit adder: the learner has In input bits, representing the addends, and n output 

bits, representing the result. It is given reinforcement value 1 if the output bits are 

the binary sum of the first n input bits and the second n input bits, otherwise it is 

given reinforcement value 0. For this experiment, a 5-bit adder problem was used; 

it has fairly high complexity, with 1024 possible inputs and 32 possible outputs. 

As we can see in Figure 39, which shows average reinforcement as a function 

of time (data points represent averages of 100 time steps), the cascade method has 

much better performance than the simple copying method. One reason for the 

superior performance of the cascade method over the copy method is that, in the 

cascade method, the output bits are being trained in parallel and the agent will not, 

in general, have to try all (or even half) of the 2^ possible actions in each input 

situation before finding the correct one. At first, it may seem that the algorithm 

is somehow taking advantage of the structure of the adder problem, because the 

general solution to the n-bit adder problem involves feeding intermediate results 

(carries) to later parts of the computation. Upon closer examination, however, it 
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Figure 39: Performance of interval estimation algorithm on 5-bit adder problem 
using copying method and cascade method of generating multiple outputs. 

is clear that the intermediate results are simply less-significant output bits, which 

are not related to the values of the carries and do not simplify the computation of 

the more-significant output bits. Thus, the performance of the CASCADE algorithm 

cannot be attributed to the special structure of the adder problem. 



Chapter 6 

Learning Boolean Functions in 

fc-DNF 

6.1    Background 

In the previous chapter, we saw that the problem of learning an action map with 

many output bits can be reduced to the problem of learning a collection of action 

maps with single Boolean outputs. Such action maps can be described by formulae 

in prepositional logic, in which the atoms are input bits. The formula (i'x A i2) V ->z0 

describes an action map that performs action 1 whenever input bits 1 and 2 are on 

or input bit 0 is off and performs action 0 otherwise. 

As we saw in Section 4.6, any learning algorithm that is to be more efficient 

than methods like interval estimation will only be able to learn a restricted class of 

action maps. When there are only two possible actions, we can describe the class 

of action maps that are learnable by an algorithm in terms of syntactic restrictions 

on the corresponding class of prepositional formulae. This method is widely used 

in the formal literature on concept learning. 

A restriction that has proved useful to the concept-learning community is to 

the class of functions that can be expressed as prepositional formulae in fc-DNF. A 

formula is said to be in disjunctive normal form (DNF) if it is syntactically organized 

into a disjunction of purely conjunctive terms; there is a simple algorithmic method 
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for converting any formula into DNF [21]. A formula is in the class Jb-DNF if and 

only if its representation in DNF contains only conjunctive terms of length k or 

less. There is no restriction on the number of conjunctive terms—just their length. 

Whenever k is less than the number of atoms in the domain, the class Jfc-DNF is a 

restriction on the class of functions. 

The next section presents Valiant's algorithm for learning functions in Jfc-DNF 

from input-output pairs. The following sections describe algorithms for learning 

action maps in fc-DNF from reinforcement and present the results of an empiri- 

cal comparison of their performance. For each reinforcement-learning algorithm, 

the inputs are bit-vectors of length M, plus a distinguished reinforcement bit; the 

outputs are single bits. 

6.2    Learning fc-DNF from Input-Output Pairs 

Valiant was one of the first to consider the restriction to learning functions ex- 

pressible in fc-DNF [76,77]. He developed an algorithm, shown below, for learning 

functions in fc-DNF from input-output pairs, which actually only uses the input- 

output pairs with output 0. 

Algorithm 12 (VALIANT) Let T be initialized to the set of conjunctive terms of 

length k over the set of atoms (corresponding to the input bits) and their negations, 

and let L be the number of learning instances required to learn the concept to the 

desired accuracy.1 

for i := 1 to L do begin 

v := randomly drawn negative instance 

T := T— any term that is satisfied by v 

end 

return T 

'This choice is not relevant to our reinforcement-learning scenario—the details are described in 
Valiant's papers [76,77]. 
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Algorithm 13 (LARCKDNF) Let FT be a function mapping an M-bit input vector 
into a 2kl fc )-bit vector, each of whose elements is the result of evaluating an element 
of T on the raw input vector. 
Let So of this algorithm be the initial state, so, of an instance of the LARC algorithm 
with 2k(k ) bits. The update function will be u of LARC, with the input Fr{i), and, 
similarly, the evaluation will be e of LARC, with the input Fr(i). 

Figure 40: The linear-association reinforcement-comparison algorithm for learning 
functions in fc-DNF from reinforcement. 

The VALIANT algorithm returns the set of terms remaining in T, with the inter- 

pretation that their disjunction is the concept that was learned by the algorithm. 

This method simply examines a fixed number of negative instances and removes any 

term from T that would have caused one of the negative instances to be satisfied.2 

6.3    Combining the LARC and VALIANT Algorithms 

Given our interest in restricted classes of functions, we can construct a hybrid 

algorithm for learning action maps in fc-DNF. It hinges on the simple observation 

that any such function is a linear combination of terms in the set T, where T is 

the set of conjunctive terms of length k over the set of atoms (corresponding to the 

input bits) and their negations. It is possible to take the original M-bit input signal 

and transduce it to a wider signal that is the result of evaluating each member of T 

on the original inputs. We can use this new signal as input to a linear-associative 

reinforcement learning algorithm, such as Sutton's LARC algorithm (described in 

Figure 18. If there are M input bits, the set T has size f2^) because we are 

choosing from the set of input bits and their negations. However, we can eliminate 

all elements that contain both an atom and its negation, yielding a set of size 2k (\j. 

The combined algorithm, called LARCKDNF, is described formally in Figure 40. 

2Valiant's presentation of the algorithm defines T to be the set of conjunctive terms of length 
k or less over the set of atoms and their negations; however, because any term of length less than 
k can be represented as a disjunction of terms of length k, we use a smaller set T for simplicity in 
exposition and slightly more efficient computation time. 
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The space required by the LARCKDNF algorithm, as well as the time to update 

the internal state or to evaluate an input instance, is proportional to the size of T, 

and thus, 0(Mk). 

6.4    Interval Estimation Algorithm for fc-DNF 

The interval estimation algorithm for fc-DNF is, like the algorithm described in 

Section 6.3, based on Valiant's algorithm, but the interval estimation algorithm 

uses standard statistical estimation methods, like those used in the IE algorithm, 

rather than weight-adjustments. 

The algorithm will first be described independent of particular statistical tests, 

which will be introduced later in the section. We shall need the following definitions, 

however. An input bit vector satisfies a term whenever all the bits mentioned 

positively in the term have value 1 in the input and all the bits mentioned negatively 

in the term have value 0 in the input. The quantity er(i,a) is the expected value 

of the reinforcement that the agent will gain, per trial, if it generates action a 

whenever term t is satisfied by the input and action ->a otherwise. The quantity 

ubra(t, a) is the upper bound of a 100(1 — a)% confidence interval on the expected 

reinforcement gained from performing action a whenever term t is satisfied by the 

input. The formal definition of the algorithm is given in Figure 41. 

At any moment in the operation of this algorithm, we can extract a symbolic 

description of its current hypothesis. It is the disjunction of all terms t such that 

ubra(t, 1) > u6ra(i,0) and Pr(er(<, 1) = er(<,0)) < ß. This is the fc-DNF expression 

according to which the agent is choosing its actions. 

As in the regular interval-estimation algorithm, the evaluation criterion is chosen 

in such a way as to make the important trade-off between acting to gain information 

and acting to gain reinforcement. Thus, the first requirement for a term to cause a 

1 to be emitted is that the upper bound on the expected reinforcement of emitting 

a 1 when this term is satisfied is higher than the upper bound on the expected 

reinforcement of emitting a 0 when the term is satisfied. 
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Algorithm 14 (IEKDNF) 

S0 = the set T, with a collection of statistics 
associated with each member of the set 

e(s, i) = for each t in s 
if i satisfies t and 

ubra(t,l) > ubra(t,Q) and 
Pr(er(*,l) = er(t,O))</0 

then return 1 
return 0 

u(s,i,a,r) = for each t in s 
updatejtermstatistics(t, i, a, r) 

return s 

Figure 41: The interval estimation algorithm for learning concepts in fc-DNF from 
reinforcement. 

Let the equivalence probability of a term be the probability that the expected 

reinforcement is the same no matter what choice of action is made when the term is 

satisfied. The second requirement for a term to cause a 1 to be emitted is that the 

equivalence probability be small. Without this criterion, terms for which no action 

is better will, roughly, alternate between choosing action 1 and action 0. Because 

the output of the entire algorithm will be 1 whenever any term has value 1, this 

alternation of values can cause a large number of wrong answers. Thus, if we can 

convince ourselves that a term is irrelevant by showing that its choice of action 

makes no difference, we can safely ignore it. 

In the simple Boolean reinforcement-learning scenario, the necessary statistical 

tests are quite simple. For each term, the following statistics are stored: n0, the 

number of trials of action 0; s0, the number of successes of action 0; ni, the number of 

trials of action 1; and .Sj, the number of successes of action 1. These are incremented 

only when the associated term is satisfied by the current input instance. Using the 

definition of ub(x,n) from Figure 21, we can define ubrQ(t,0) as ub(s0,n0) and 
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ubra(t, 1) as ub(si,rii), where So, noi si> an<i ni are the statistics associated with 

term t and a is used in the computation of ub. 

To test for equality of the underlying Bernoulli parameters, we use a two-sided 

test at the ß level of significance that rejects the hypothesis that the parameters 

are equal whenever 

»C _  *L 
wo     ni is either   <  or 

/(^)(i-^)(no-^ 
V "oni 

< -Zß/2 

or 

> +Zß/2 

where zp/2 is a standard normal deviate [36]. Because sample size is important for 

this test, the algorithm is slightly modified to ensure that, at the beginning of a run, 

each action is chosen a minimum number of times. This parameter will be referred 

to as ßmin. 

As for the interval-estimation algorithm, real-valued reinforcement can be han- 

dled in IEKDNF using statistical tests appropriate for normally-distributed values or 

for non-parametric models. In nonstationary environments, statistics can be scaled 

in order to ensure that the algorithm does not stay converged to a non-optimal 

strategy. 

The order complexity of this algorithm is the same as that of the LARCKDNF 

algorithm of Section 6.3, namely 0(Mk). 

6.5    Empirical Comparison 

This section reports the results of a set of experiments designed to compare the 

performance of the algorithms discussed in this chapter with one another, as well 

as with some other standard methods. 
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6.5.1    Algorithms and Environments 

The following algorithms were tested in these experiments: 

• LARC (Defined in Figure 18) 

• LARC+ (LARC with an extra input wired to have a constant value) 

• LARCKDNF (Defined in Figure 40) 

• IEKDNF (Defined in Figure 41) 

• BP (Defined in Figures 19 and 20) 

• IE (Defined in Figure 21) 

The regular interval-estimation algorithm IE is included as a yardstick; it is compu- 

tationally much more complex than the other algorithms and should be expected 

to out-perform them. 

Each of the algorithms was tested in three different environments. The environ- 

ments are called binomial Boolean expression worlds and can be characterized by 

the parameters M, expr, pi„ pin, pos, and pon. The parameter M is the number of 

input bits; expr is a Boolean expression over the input bits; pi, is the probability of 

receiving reinforcement value 1 given that action 1 is taken when the input instance 

satisfies expr, j>\n is the probability of receiving reinforcement value 1 given that 

action 1 is taken when the input instance does not satisfy expr, poä is the probabil- 

ity of receiving reinforcement value 1 given that action 0 is taken when the input 

instance satisfies expr, p^ is the probability of receiving reinforcement value 1 given 

that action 0 is taken when the input instance does not satisfy expr. Input vectors 

are chosen by the world according to a uniform probability distribution. 

Table 4 shows the values of these parameters for each task. The first task has 

a simple, linearly separable function; what makes it difficult is the small separation 

between the reinforcement probabilities. Task 6 has highly differentiated reinforce- 

ment probabilities, but the function to be learned is a complex exclusive-or. Finally, 

Task 7 is a simple conjunctive function, but all of the reinforcement probabilities 

are high and it has twice as many input bits as the other two tasks. 
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Task M                           expr                           pi,    pin   pos POn 
5 
6 
7 

3                («oAii)V(iiAtj)                 .6      .4     .4 
3    (io A->ii) V (ii A->i2) V (i2 A--to)     .9      .1      .1 
6                         t2A-us                           .9      .5     .6 

.6 

.9 

.8 

Table 4: Parameters of test environments for fc-DNF experiments. 

6.5.2 Parameter Tuning 

Each of the algorithms has a set of parameters. For both IEKDNF and LARCKDNF, 

k = 2. Algorithms LARC, LARC+, and LARCKDNF have parameters a, ß, and 

<T. Following Sutton [70], parameters ß and a in LARCKDNF, LARC, and LARC+ 

are fixed to have values .1 and .3, respectively. The IEKDNF algorithm has two 

confidence-interval parameters, za/2 and zp/2, and a minimum age for the equality 

test ßmin, while the IE algorithm has only z0/2. Finally, the BP algorithm has a large 

set of parameters: ß, learning rate of the evaluation output units, /?/,, learning rate 

of the evaluation hidden units, p, learning rate of the action output units, and p^, 

learning rate of the action hidden units. All of the parameters for each algorithm 

are chosen to optimize the behavior of that algorithm on the chosen task. The 

success of an algorithm is measured by the average reinforcement received per tick, 

averaged over the entire run. 

For each algorithm and environment, a series of 100 trials of length 3000 were 

run with different parameter values. Table 5 shows the best set of parameter values 

found for each algorithm-environment pair. 

6.5.3 Results 

Using the best parameter values for each algorithm and environment, the perfor- 

mance of the algorithms was compared on runs of length 3000. The performance 

metric was average reinforcement per tick, averaged over the entire run. The re- 

sults are shown in Table 6, together with the expected reinforcement of executing a 

completely random behavior (choosing actions 0 and 1 with equal probability) and 

of executing the optimal behavior. 
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ALG-TASK 1 2 3 
LARC 

a .0625 .125 .125 
LARC+ 

a .125 .0625 .25 
LARCKDNF 

a .125 .25 .03125 
IEKDNF 

Za/2 3 3.5 2.5 
Zßß 1 2.5 3.5 
Pmin 15 5 25 
BP 

ß .1 .25 .1 
ßk .2 .3 .05 
P .15 .15 .35 

Ph .2 .05 .1 
IE 

Za/2 3.0 1.5 2.5 

Table 5: Best parameter values for each fc-DNF algorithm in each environment. 

ALG-TASK 1 2 3 
LARC .5329 .7418 .7769 

LARC+ .5456 .7459 .7722 
LARCKDNF .5783 .8903 .7825 

IEKDNF .5789 .8900 .7993 
BP .5456 .7406 .7852 
IE .5827 .8966 .7872 

random .5000 .5000 .6750 
optimal .6000 .9000 .8250 

Table 6: Average reinforcement for fc-DNF problems over 100 runs of length 3000. 
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As in the set of experiments described in Chapter 4, we must examine the 

relationships of statistically significant dominance among the algorithms for each 

task. Figure 42 shows, for each task, a pictorial representation of the results of a 

1-sided t-test applied to each pair of experimental results. The graphs encode a 

partial order of significant dominance, with solid lines representing significance at 

the .95 level and dashed lines representing significance at the .85 level. 

With the best parameter values for each algorithm, it is also instructive to 

compare the rate at which performance improves as a function of the number of 

training instances. Figures 43, 44, and 45 show superimposed plots of the learning 

curves for each of the algorithms. Each point represents the average reinforcement 

received over a sequence of 100 steps, averaged over 100 runs of length 3000. 

6.5.4    Discussion 

On Tasks 5 and 6, the basic interval-estimation algorithm, IE, performed signifi- 

cantly better than any of the other algorithms. The magnitude of its superiority, 

however, is not extremely great—Figures 43 and 44 reveal that the IEKDNF and 

LARCKDNF algorithms have similar performance characteristics both to each other 

and to IE. On these two tasks, the overall performance of IEKDNF and LARCKDNF 

were not found to be significantly different. 

The backpropagation algorithm, BP, performed considerably worse than ex- 

pected on Tasks 5 and 6. It is very difficult to tune the parameters for this al- 

gorithm, so its bad performance may be explained by a sub-optimal setting of 

parameters.3 However, it is possible to see in the learning curves of Figures 43 and 

44 that the performance of BP was still increasing at the ends of the runs. This may 

indicate that with more training instances it would eventually converge to optimal 

performance. 

3In the parameter tuning phase, the parameters were varied independently—it may well be 
necessary to perform gradient-ascent search in the parameter space, but that is a computationally 
difficult task, especially when the evaluation of any point in parameter space may have a high degree 
of noise. 
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TASK 5 TASK 6 

LARCKDNF JEKDNF jm LARCKDNF 

LARC+ 

LARC 

TASK 7 
IEKDNF 

>LARC+ 

Figure 42: Significant dQminance partial order among fc-DNF algorithms for each 
task. 
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ie 
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30 

Figure 43: Learning curves for Task 5. 

er 

5    10   15   20   25 
bucket of 100 ticks 

random 
30 

Figure 44: Learning curves for Task 6. 
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er 

10   15   20   25 

bucket of 100 ticks 

Figure 45: Learning curves for Task 7. 

lo 
random 

The linear-association algorithms performed poorly on both Tasks 5 and 6. This 

poor performance was expected on Task 6, because such algorithms are known to be 

unable to learn non-linearly-separable functions [47]. Task 5 is difficult for these al- 

gorithms because, during the execution of the algorithm, the evaluation function is 

often too complex to be learned by the simple linear associator. Adding a constant 

input value to the LARC algorithm made a significant improvement in performance; 

this is not surprising, because it allows the algorithm to find discrimination hyper- 

planes that do not pass through the origin of the space. 

Task 7 reveals many interesting strengths and weaknesses of the algorithms. 

One of the most interesting is that IE is no longer the best performer. Because 

the target function is simple and there is a larger number of input bits, the ability 

to generalize across input instances becomes important. The IEKDNF algorithm is 

able to find the correct hypothesis early during the run (this is apparent in the 

learning curve of Figure 45). However, because the reinforcement values are not 

highly differentiated and because the size of the set T is quite large, it begins to 

include extraneous terms due to statistical fluctuations in the environment, causing 

slightly degraded performance. The IE, BP, and LARCKDNF algorithms all have very 
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similar performance on Task 7, with the linear-associator algorithms performing 

slightly worse, but still reasonably well. 

6.6    Conclusion 

Prom this study, we can see that it is useful to design algorithms that are tai- 

lored to learning certain restricted classes of functions. The two specially-designed 

algorithms fax out-performed standard methods of comparable complexity. The 

LARCKDNF and IEKDNF algorithms each have their strengths and weaknesses. It is 

possible that LARCKDNF may outperform IEKDNF to some extent because in LAR- 

CKDNF each term gets to contribute to the answer with different degrees. This 

avoids errors that occur in IEKDNF when a single term is barely over the threshold 

for generating a 1. On the other hand, the state of IEKDNF has internal semantics 

that are clear and directly interpretable in the language of classical statistics. This 

simplifies the process of extending the algorithm to apply to other types of worlds 

in a principled manner. 



Chapter 7 

A Generate-and-Test Algorithm 

This chapter describes GTRL, a highly parametrized generate-and-test algorithm for 

learning Boolean functions from reinforcement. Some parameter settings make it 

highly time- and space-efficient, but allow it to learn only a restricted class of func- 

tions; other parameter settings allow arbitrarily complex functions to be learned, 

but at a cost in time and space. 

7.1    Introduction 

The generate-and-test reinforcement-learning algorithm, GTRL, performs a bounded, 

real-time beam-search in the space of Boolean formulae, searching for a formula that 

represents an action function that exhibits high performance in the environment. 

This algorithm adheres to the strict synchronous tick discipline of the learning- 

behavior formulation of Chapter 2, performing its search incrementally, while using 

the best available solution to generate actions for the inputs with which it is pre- 

sented. 

The algorithm has, at any time, a set of hypotheses that it is considering. A 

hypothesis has as its main component a Boolean formula whose atoms are input bits 

or their negations. Negations can occur only at the lowest level in the formulae.1 

Each formula represents a potential action-map for the behavior, generating action 1 

*Any Boolean formula can be put in this form using DeMorgan's laws. 

103 
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whenever the current input satisfies the formula and action 0 when it does not. The 

GTRL algorithm generates new hypotheses by combining the formulae of existing 

hypotheses using syntactic conjunction and disjunction operators.2 This generation 

of new hypotheses represents a search through Boolean-formula space; statistics 

related to the performance of the hypotheses in the domain are used to guide the 

search, choosing appropriate formulae to be combined. 

This search is quite constrained, however. There is a limit on the number of 

hypotheses with formulae at each level of Boolean complexity (depth of nesting of 

Boolean operators), making the process very much like a beam search in which the 

entire beam is retained in memory. As time passes, old elements may be deleted 

from and new elements added to the beam, as long as the size is kept constant. 

This guarantees that the algorithm will operate in constant time per input instance 

and that the space requirement will not grow without bound over time. 3 

This search method is inspired by Schlimmer's STAGGER system [65,66,64,63,62] 

for learning Boolean functions from input-output pairs. STAGGER makes use of a 

number of techniques, including a Bayesian weight-updating component, that are 

inappropriate for the reinforcement-learning problem. In addition, it is not strictly 

limited in time- or space-complexity. The GTRL algorithm exploits STAGGER's idea 

of performing incremental search in the space of Boolean formulae, using statistical 

estimates of the "necessity" and "sufficiency" (these notions will be made concrete 

in the following discussion) to guide the search. 

The presentation of the GTRL algorithm will be independent of any distribu- 

tional assumptions about the reinforcement values generated by the environment; 

it will, however, assume that the environment is consistent (see Section 2.1.2 for 

the definition) for the agent. The process of tailoring the algorithm to work for 

particular kinds of reinforcement will be described in Section 7.3. 

2Other choices of syntactic search operators are possible. Conjunction and disjunction are used 
here because of the availability of good heuristics for guiding their application. These heuristics will 
be discussed in Section 7.5.1. 

3An alternative would be to simply limit the total number of hypotheses, without sorting them 
into levels. This approach would give added flexibility, but would also cause some increase in 
computational complexity. In addition, it is often beneficial to retain hypotheses at low levels of 
complexity because of their usefulness as building blocks. 
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7.2    High-Level Description 

As with other learning behaviors, we will view the GTRL algorithm in terms of 

initial state, update function, and evaluation function, as shown in Figure 46. The 

internal state of the GTRL algorithm consists of a set of hypotheses organized into 

levels. Along with a Boolean formula, each hypothesis contains a set of statistics 

that reflect different aspects of the performance of the formula as an action map in 

the domain. Each level contains hypotheses whose formulae are of a given Boolean 

complexity. Figure 47 shows an example GTRL internal state. Level 0 consists of 

hypotheses whose formulae are individual atoms corresponding to the input bits and 

to their negations, as well as the hypotheses whose formulae are the logical constants 

true and false.4 Hypotheses at level 1 have formulae that are conjunctions and 

disjunctions of the formulae of the hypotheses at level 0. In general, the hypotheses 

at level n have formulae that consist of conjunctions or disjunctions of two formulae: 

one from level n — 1 and one from any level, from 0 to n — 1. The hypotheses at 

each level are divided into working and candidate hypotheses; the reasons for this 

distinction will be made clear during the detailed explanation of the algorithm. 

The update function of the GTRL algorithm consists of two phases: first, up- 

dating the statistics of the individual hypotheses and, second, adding and deleting 

hypotheses. 

The evaluation function also works in two phases. The first step is to find the 

working hypothesis at any level that has the best performance at choosing actions. 

If the chosen working hypothesis is satisfied by the input to be evaluated, action 1 

is generated; if it is not satisfied, action 0 is generated. 

The following sections will examine these processes in greater detail. 

4It is necessary to include true and false in case either of those is the optimal hypothesis. Hy- 
potheses at higher levels are simplified, so even if a A ->a or a V -»a were to be constructed, it would 
not be retained. 
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Algorithm 15 (GTRL) 

s0 = array[0..L] of 
record 

working-hypoths: array[0..H] of hypoth 
candidate-hypoths: array[0..C] of hypoth 

end 
u(s, i, a, r) =    update-hypotheses (s, i, a, r) 

for each level in s do begin 
add-kypotheses (level, s) 
promote-hypotheses (level) 
prune-hypotheses (level) 

end 
e(s,i) = h := best-predictor (s) 

if satisfies (i, h) then 
return 1 

else return 0 

Figure 46: High-level description of the GTRL algorithm. 

Level 2 (a v b) A (-ib v -ic) (b v c) A —a (c A —d) v (a A -JJ) 

Level 1 flvfr bvc CA-ifl —ibv-ic flA-ift 

Level 0 a —a b -b c -nC t f 

Figure 47: Example GTRL internal state. 
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7.3    Statistics 

Associated with each working and candidate hypothesis is a set of statistics; these 

statistics are used to choose working hypotheses for generating actions and for com- 

bination into new candidate hypotheses at higher levels. The algorithms for updat- 

ing the statistical information and computing statistical quantities are modularly 

separated from the rest of the GTRL algorithm. The choice of statistical module 

will depend on the kind and distribution of reinforcement values received from the 

environment. Appendix A provides the detailed definitions of statistics modules 

for cases in which the reinforcement values are binomially or normally distributed; 

in addition, it contains a non-parametric statistics module for use when there is 

no known model of the distribution of reinforcement values. A statistics module 

supplies the following functions: 

age(h): The number of times the behavior, as a whole, has taken the action that 

would have been taken had hypothesis h been used to generate the action. 

er(h): A point estimate of the expected reinforcement received given that the action 

taken by the behavior agrees with the one that would have been generated 

had hypothesis h been used to generate the action. 

er-ub{h): The upper bound of a 100(1 - a)% confidence interval estimate of the 

quantity estimated by er(h). 

erp(h): A point estimate of the expected reinforcement received given that hypoth- 

esis h was used to generate the action that resulted in the reinforcement. 

erp-v,b(h): The upper bound of a 100(1 - <*)% confidence interval estimate of the 

quantity estimated by erp(h). 

N(h): A point estimate of the expected reinforcement received given that the action 

taken by the behavior was 0 and hypothesis h would have generated action 0 

as well. 
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S(h): A point estimate of the expected reinforcement received given that the action 

taken by the behavior was 1 and hypothesis h would have generated action 1 

as well. 

7.4    Evaluating Inputs 

Each time the evaluation function is called, the most predictive working hypothesis 

is chosen, by taking the one with the highest value of pv, defined as 

pv(h) = [K tr(h)\ + erp-ub(h) . 

This definition has the effect of sorting first on the criterion of er, then breaking ties 

based on the value of erp-ub. The constant multiplier « can be adjusted to make 

this criterion more or less sensitive to low-order digits of the value of er(h).5 

What makes this an appropriate criterion for choosing the hypothesis with the 

best performance? The quantity that most clearly represents the predictive value 

of the hypothesis is erp(h), which is a point estimate of the expected reinforce- 

ment given that actions are chosen according to hypothesis h. Unfortunately, this 

quantity only has a useful value after the hypothesis has been chosen to generate 

actions a number of times. Thus, as in the interval estimation algorithm, we make 

use of erp-ub(h), the upper bound of a confidence interval estimate of the expected 

reinforcement of acting according to hypothesis h. 

So, why not simply choose the working hypothesis with the highest value of 

erp-ub(h), similar to what would be done in the interval estimation algorithm? The 

reason lies in the fact that in the GTRL algorithm, new hypotheses are continually 

being created. If it always chooses hypotheses with high values of erp-ub(h), it will 

be in danger of spending nearly all of its time choosing hypotheses because little 

is known about them, rather than because they are known to perform well. The 

value of er(h) serves as a filter on hypotheses that will prevent most of this fruitless 

exploration. The quantity er(h) is not a completely accurate estimator of erp(h), 

because the distribution of instances over which it is defined may be different than 

5In all of the experiments described in this chapter, K had the value 1000. 
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the distribution of input instances presented to the entire algorithm,6 but it serves 

as a useful approximation. We can use er(h) rather than er-ub(h) because the 

statistics used to compute er(h) get updated even when h is not used to generate 

actions, so that statistic becomes valid eventually without having to do any special 

work. Thus, hypotheses that look good on the basis of the value of er(h) tend to 

get chosen to act; as they do, the value of erp-ub(h) begins to reflect their true 

predictive value. This method still spends some time acting according to untested 

hypotheses, but that is necessary in order to allow the algorithm to discover the 

correct hypothesis initially and to adjust to a dynamically changing world. The 

amount of exploration that actually takes place can be controlled by changing the 

rate at which new hypotheses will be generated, as will be discussed in Section 7.7. 

Once a working hypothesis is chosen, it is used to evaluate the input instance. 

An input vector i satisfies hypothesis h if fc's formula evaluates to true under the 

valuation of the atoms supplied by input i. If the input instance satisfies the chosen 

hypothesis, action 1 is generated; otherwise, action 0 is generated. 

7.5    Managing Hypotheses 

The process by which hypotheses are managed in the GTRL algorithm can be divided 

into three parts: adding, promoting, and pruning. On each call to the update 

function, the statistics of all working and candidate hypotheses are updated. Then, 

if it is time to do so, a new hypothesis may be constructed and added to the 

candidate list of some level. Candidate hypotheses that satisfy the appropriate 

requirements are "promoted" to be working hypotheses. Finally, any level that 

has more working hypotheses than the constant number allotted to it will have its 

working hypothesis list pruned. 

6This difference in distributions depends on the fact that er(h) is conditioned on the agreement 
between hypothesis h and whatever hypotheses are actually being used to generate actions. 
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7.5.1    Adding Hypotheses 

Search in the GTRL algorithm is carried out through the addition of hypotheses. 

Each new hypothesis is a conjunction or disjunction of hypotheses from lower levels.7 

On each update cycle, a candidate hypothesis is added to a level if the level is not 

yet fully populated (the total number of working and candidate hypotheses is less 

than the maximum number of working hypotheses) or if it has been a certain length 

of time since a candidate hypothesis was last generated for this level and there is 

room for a new candidate. 

If it is time to generate a new hypothesis, it is randomly decided whether to 

make a conjunctive or disjunctive hypothesis.8 Once the combining operator is 

determined, operands must be chosen. 

The following search heuristic is used to guide the selection of operands: 

When making a conjunction, use operands that have a high value of 

necessity; when making a disjunction, use operands that have a high 

value of sufficiency. 

The terms necessity and sufficiency have a standard logical interpretation: P is 

sufficient for Q if P implies Q; P is necessary for Q if -iP implies ->Q (that is, Q 

implies P). Schlimmer follows Duda, Hart, and Nilsson [19,20], denning the logical 

sufficiency of evidence E for hypothesis H as 

LS(E m - Pr(Jg Ig) LS{E>H)-pr(E\H) 

and the logical necessity of E for H as 

Pr(E | H) 
LN(E1H) = 

Pr(£ | H) 

7Terminology is being abused here in order to simplify the presentation. Rather than conjoining 
hypotheses, the algorithm actually creates a new hypothesis whose formula is the conjunction of the 
formulae of the operand hypotheses. This use of terminology should not cause any confusion. 

8Schlimmer's STAGGER system generates new hypotheses in response to errors, using the nature 
of the error (false positive vs. true negative) to determine whether the new hypothesis should be a 
conjunction or a disjunction. This method cannot be applied in the general reinforcement-learning 
scenario, in which the algorithm is never told what the "correct" answer is, making it unable to 
know whether or not it just made an "error." 
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If E is truly logically sufficient for H, then E implies H, so PT(E \ H) = 0, making 

LS(E,H) = 00. If E and H are statistically independent, then LS(E,H) = 1. 

Similarly, if E is logically necessary for H, then .E implies #, so Pr(iS | H) = 0, 

making LN(£,,¥) = 0. As before, if E and if are independent, LN(£,#) = 1. 

What makes functions like these useful for our purposes is that they encode the 

notions of "degree of implication" and "degree of implication by."9 Let h*(i) be the 

optimal hypothesis, defined by 

Vz./i*(i")<->Opt(i,l) , 

where Opt is denned as in Chapter 2. We would like to use these same notions of 

necessity and sufficiency to guide our search, estimating the necessity and sufficiency 

of hypotheses in the GTRL algorithm state for h", the Boolean function that encodes 

the optimal action policy for the environment. But, because of the reinforcement- 

learning setting of our problem, we have no access to or direct information about 

h*—the environment never tells the agent which action it should have taken. 

If we define the sufficiency of hypothesis h for the optimal policy, S(h) as 

S(h) = er(i, 1 | satisfies(i, h)) , 

we have a function with the desired properties. If h implies h', then 

S(h) = er(i,l \ satisfies(i,h*)) , 

which is the best that can be done on this set of inputs, because whenever action 1 

would be taken by h, it would also be taken by h*. In all other cases, S(h) < S(h'), 

with S(h) roughly encoding the degree to which h implies h*. If h and h* are 

completely uncorrelated, S(h) is the expected reinforcement of acting according to 

a random policy. Similarly, we define the necessity of a hypothesis h for the optimal 

policy, N(h), as 

N(h) = er(f,0 I satisfies(i,h)) . 

9The LS and LN functions were designed for combining evidence in a human-intuitive way; their 
quantitative properties are crucial to their correctness and usefulness for this purpose. The S and N 
operators that will be proposed do not have the appropriate quantitative properties for such uses. 
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If ->h implies ->h*, then 

N(h) = er(t,0 | satisfies(i,h')) , 

because whenever action 0 would be taken by h it would be taken by h*. In all other 

cases, N(h) < N(h*), with N roughly encoding the degree to which h is implied by 

h\ 

Now we understand the definition and purpose of the necessity and sufficiency 

operators, but what makes them appropriate for use as search-control heuristics? In 

general, if we have a hypothesis that is highly sufficient, it can be best improved by 

making it highly necessary as well; this can be achieved by making the hypothesis 

more general by disjoining it with another sufficient hypothesis. Similarly, given a 

highly necessary hypothesis, we would like to make it more sufficient; we can achieve 

this through specialization by conjoining it with another necessary hypothesis. As 

a simple example, consider the case in which h* = aVb. In this case, the hypothesis 

a is logically sufficient for h*, so the heuristic will have us try to improve it by 

disjoining it with another sufficient hypothesis. If h* = a A 6, the hypothesis a is 

logically necessary for h*, so the heuristic would give preference to conjoining it 

with another necessary hypothesis. 

Having decided, for instance, to create a new disjunctive hypothesis at level n, 

the algorithm uses sufficiency as a criterion for choosing operands. This is done by 

creating two sorted lists of hypotheses: the first list consists of the hypotheses of 

level n — 1, sorted from highest to lowest sufficiency; the second list contains all of 

the hypotheses from levels 0 to n — 1, also sorted by sufficiency. The first list is 

limited in order to allow complete coverage of the search space without duplication 

of hypotheses at different levels. Thus, for example, a hypothesis of depth 2 can be 

constructed at level 2, but one of depth 1 cannot. 

Given the two sorted fists (another sorting criterion could easily be substituted 

for necessity or sufficiency at this point), a new disjunctive hypothesis is constructed 

by syntactically disjoining the formulae associated with the hypotheses at the top 

of each list. This new formula is then simplified and put into a canonical form.10 

10The choice of canonicalization and simplification procedures represents a tradeoff between com- 
putation time and space used in canonicalization against the likelihood that duplicate hypotheses 
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index-1  := 0 
index-2  :« 0 
index-sum :* 0 
loop 

try-hypoth(list-1 [index-1],list-2[index-2]); 

index-1 :■ index-1 + 1; 
index-2 :« index-2 - 1; 
if index-2 * -1 then begin 

index-sum :■ index-sum + 1 
index-1  := 0 
index-2 :* index-sum 

end 
end 

Figure 48: Code to generate the best new hypothesis. 

If the simplified formula is of depth less than n it is discarded, because if it is 

important, it will occur at a lower level and we wish to avoid duplication. If it is 

of depth n, it is tested for syntactic equality against all other hypotheses at level 

n. If the hypothesis is not a syntactic duplicate, it is added to the candidate list 

of level n and its statistics are initialized. If the new hypothesis is too simple or 

is a duplicate, two new indices into the sorted lists are chosen and the process is 

repeated. The new indices are chosen so that the algorithm finds the non-duplicate 

disjunction made from a pair of hypotheses whose sum of indices is least., This is 

achieved by the code shown in Figure 48. The complexity of this process can be 

controlled by limiting the total number of new hypotheses that can be tried before 

giving up. In addition, given such a limit, it is possible to generate only prefixes 

of the sorted operand-lists that are long enough to support the desired number of 

attempts. 

will not be detected. Any process for putting Boolean formulae into a normal form that reduces 
semantic equivalence to syntactic equivalence has exponential worst-case time and space complexity 
in the original size of the formula. The CTRL algorithm currently uses a very simple simplification 
process whose complexity is linear in the original size of the formula and that seems, empirically, to 
work well. This simplification process is described in detail in Appendix B. 
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7.5.2    Promoting Hypotheses 

On each update phase, the candidate hypotheses are considered for promotion. The 

reason for dividing the candidate hypotheses from the working hypotheses is to be 

sure that they have gathered enough statistics for their values of N, S, and er to 

be fairly accurate before they enter the pool from which operands and the action- 

generating hypothesis are chosen. Thus, the criterion for promotion is simply the 

age of the hypothesis, which reflects the accuracy of its statistics. Any candidate 

that is old enough is moved, on this phase, to the working hypothesis list. 

7.5.3    Pruning Hypotheses 

After candidates have been promoted, the total number of working hypotheses in a 

level may exceed the preset limit. If this happens, the working hypothesis list for the 

level is pruned. An hypothesis can play an important role in the GTRL algorithm for 

three reasons: its prediction value is high, making it useful for choosing actions; its 

sufficiency is high, making it useful for combining into disjunctions; or its necessity 

is high, making it useful for combining into conjunctions. For these reasons, we 

adopt the following pruning strategy: 

To prune down to n hypotheses, first choose the n/3 hypotheses with the 

highest predictive value; of the remaining hypotheses, choose the n/3 with 

the highest necessity; and, finally, of the remaining hypotheses, choose 

the n/3 with the highest sufficiency. 

This pruning criterion is applied to all but the bottom-most and top-most levels. 

Level 0, which contains the atomic hypotheses and their negations, must never be 

pruned, or the capability of generating the whole space of fixed-size Boolean for- 

mulae will be lost. Because its hypotheses will not undergo further recombination, 

the top level is pruned so as to retain the n most predictive hypotheses. 
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7.6 Parameters of the Algorithm 

The GTRL algorithm is highly configurable, with its complexity and learning ability 

controlled by the following parameters: 

L: The number of levels of hypotheses. 

za/2: The size of the confidence interval used to generate erp-ub. 

H(l): The maximum number of working hypotheses per level; can be a function of 

level number, /. 

C(/): The maximum number of candidate hypotheses per level; can be a function 

of level number, /. 

PA: The age at which candidate hypotheses are promoted to be working hypotheses. 

R: The rate at which new hypotheses are generated; every R ticks, for each level, /, 

if there are not more than C(l) candidate hypotheses, a new one is generated. 

T: The maximum number of new hypotheses that are tried, in a tick, to find a 

non-duplicate hypothesis. 

Mi The number of input bits. 

Because level 0 is fixed, we have H(0) = 2M + 2. 

7.7 Computational Complexity 

The space complexity of the GTRL algorithm is 

O(EWi) + CU))V) ; 

for each level j of the L levels, there are H(j) + C(j) working and candidate hy- 

potheses, each of which has size at most 2J for the Boolean expression, plus a 
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constant amount of space for storing the statistics associated with the hypothesis. 

This expression can be simplified, if H and C are independent of level, to 

0(L(H + C)(2L+1 - 1)) . 

which is 

0(L(H + C)2L) . 

The time complexity for the evaluation function is 

0(J2H(j)+2L) ; 
3=0 

the first term accounts for spending a constant amount of time examining each 

working hypothesis to see which one has the highest predictive value. Once the most 

predictive working hypothesis is chosen, it must be tested for satisfaction by the 

input instance; this process takes time proportional to the size of the expression, the 

maximum possible value of which is 2L. If if is independent of level, this simplifies 

to 

0(LH + 2L) . 

The expression for computation time of the update function is considerably more 

complex. It is the sum of the time taken to update the statistics of all the working 

and candidate hypotheses plus, for each level, the time to add hypotheses, promote 

hypotheses, and prune hypotheses for the level. 

The time to update the hypotheses is the sum of the times to update the indi- 

vidual hypotheses. The update phase requires that each hypothesis be tested to see 

if it is satisfied by the input. This testing requires time proportional to the size of 

the hypothesis. Thus we have a time complexity of 

0(t(H(j) + C(j))V) 
;=o 

which simplifies to 

0(L(H + C)2L) . 

The time to add hypotheses consists of the time to create the two sorted lists 

(assumed to be done in n log n time in the length of the list) plus the number of new 
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hypotheses tried times the amount of time to construct and test a new hypothesis 

for duplication. This time is, for level j, 

0(H(j - l)log H(j - 1) + (J2 H(k))log(£ H(k)) + TT{H(j) + C(j))) . 
Jt=0 fe=0 

The last term is the time for testing new hypotheses against old ones at the same 

level to be sure there are no duplicates. Testing for syntactic equality takes time 

proportional to the size of the hypothesis and must be done against all working and 

candidate hypotheses in level j. There is no explicit term for simplification of newly 

created hypotheses because GTRL uses a procedure that is linear in the size of the 

hypothesis. 

The time to promote hypotheses is simply proportional to the number of candi- 

dates, C(j). 

Finally, the time to prune hypotheses is 3 times the time to choose the H(j)/Z 

best hypotheses which, for the purpose of developing upper bounds, is H(j) log H(j). 

Summing these expressions for each level and making the simplifying assumption 

that H and C do not vary with level yields a time complexity of 

0(L(H log H + LH \og(LH) + T2L(H + C) + C + H log H)) , 

which can be further simplified to 

0(L2Hlog(LH) + T2LL(H + C)) . (10) 

The time complexity of the statistical update component, 0(L(H + C)2L), is domi- 

nated by the second term above, making expression 10 above the time complexity of 

the entire update function. This is the complexity of the longest possible tick. The 

addition and pruning of hypotheses, which are the most time-consuming steps, will 

happen only once every R ticks. Taking this into account, we get a kind of "average 

worst-case" total complexity (the average is guaranteed when taken over a number 

of ticks, rather than being a kind of expected complexity based on assumptions 

about the distribution of inputs) of 

0(L(H + C)2L + ±L2H log(LH) + ^2LL(H + C)) . 
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The complexity in the individual parameters is 0(2L), 0(H log H), 0(1/R), 0(T), 

0(C). Clearly, the number of levels and the number of hypotheses per level have 

the greatest effect on total algorithmic complexity.11 

7.8    Choosing Parameter Values 

This section will explore the relationship between the settings of parameter values 

and the learning abilities of the GTRL algorithm. 

7.8.1 Number of Levels 

Any Boolean function can be written with a wide variety of syntactic expressions. 

Consider the set of Boolean formulae with the negations driven in as far as possible, 

using DeMorgan's laws. The depth of such a formula is the maximum nesting depth 

of binary conjunction and disjunction operators within the formula. The depth of a 

Boolean function is defined to be the depth of the shallowest Boolean formula that 

expresses the function. 

An instance of the GTRL algorithm with L levels of combination is unable to 

learn functions with depth greater than L. Whether it can learn all functions of 

depth L or less depends on the settings of other parameters in the algorithm. The 

time and space complexities of the algorithm are, technically, most sensitive to this 

parameter, both being exponential in the number of levels. However, in practical 

applications of this algorithm, H is usually considerably larger than 2L. 

7.8.2 Number of Working and Candidate Hypotheses 

The choice of the size of the hypothesis lists at each level also has a great effect 

on the overall complexity of the algorithm. The working hypothesis list needs 

to be at least big enough to hold all of the subexpressions of some formula that 

describes the target function.   Thus, in order to learn the function described by 

11 This complexity is not as bad as it may look, because 1L is just the length of the longest formula 
that can be constructed by the algorithm. The time and space complexities are linear in this length. 
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»o A (t'i V 1*2) A (13 V -'14), level 1 must have room for at least two working hypotheses, 

i'i V »2 and i2 V -1(4, and levels 2 and 3 must have room for at least one working 

hypothesis each. 

This amount of space will rarely be sufficient, however. There must also be room 

for newly generated hypotheses to stay until they are tested and proven or disproven 

by their performance in the environment. Exactly how much room this is depends 

on the rate, R, at which new hypotheses are generated and on the size, zQ/2, of the 

confidence intervals used to generate erp-ub. To see this, consider the case in which 

a representation of the optimal hypothesis, h*, has already been constructed. The 

algorithm continues to generate new hypotheses, one every R ticks, with each new 

hypothesis requiring an average of j ticks to be proven to be worse than h*. That 

means there must be an average of R/j slots for extra hypotheses at this level. Of 

course, it is likely that during the course of a run, certain non-optimal hypotheses 

will take more than j ticks to disprove. This can cause h* to be driven out of 

the hypothesis list altogether during the pruning phase. Thus, a more conservative 

strategy is to prevent this by increasing the size of the hypothesis lists, but at a 

penalty in computation time. 

Even when there is enough space for all subexpressions and their competitors at 

each level, it is possible for the size of the hypothesis lists to affect the speed at which 

the optimal hypothesis is generated by the algorithm. This can be easily understood 

in the context of the difficulty of a function for the algorithm. Intuitively, functions 

whose subexpressions are not naturally preferred by the necessity and sufficiency 

search heuristics are difficult for the GTRL algorithm to construct. In such cases, 

the algorithm is reduced to randomly choosing expressions at each level. 

Consider the case in which h* = (t0 A ->i\) V (->i0 A t'i), an exclusive-or function. 

Because h* neither implies nor is implied by any of the input bits, the atoms will 

all have similar, average values of N and S. Due to random fluctuations in the 

environment, different atoms will have higher values of N and S at different times 

during a run. Thus, the conjunctions and disjunctions at level 1 will represent a 

sort of random search through expression space. This random search will eventually 

generate one of the following expressions: i0 A —»i'i, -u'o A ij, io V t'i, -u'o V -u'i. When 
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one of these is generated, it will be retained in the level 1 hypothesis list because of 

its high necessity or sufficiency. We need only wait until the random combination 

process generates its companion subexpression, and they will be combined into a 

representation of h* at level 2. 

Even with very small hypothesis lists, the correct answer will eventually be 

generated. However, as problems become more difficult, the probability that the 

random process will, on any given tick, generate the appropriate operands becomes 

very small, making the algorithm arbitrarily slow to converge to the correct answer. 

This process can be made to take fewer ticks by increasing the size of the hypothesis 

list. In the limit, the hypothesis list will be large enough to hold all conjunctions 

and disjunctions of atoms at the previous level and as soon as it is filled, the correct 

building blocks for the next level will be available and apparent. 

We can measure the overall difficulty of a function for the GTRL algorithm in 

the context of a particular distribution of input instances by measuring the degree 

to which the individual input bits are necessary or sufficient for the function. We 

can define the difficulty of function /, D(f), as 

W)= E fmin( r u)  fVT« \  n>+ ™(^('i. /). LN^iJ)))  . j<M\        Lb(ij,f)  L5(-i»j,/) ) 

For each positive atom, the lack of sufficiency or necessity makes the problem more 

difficult; the term min( L5,j », L5A ») measures the degree to which the atom 

and its negation are insufficient; the term min(LiV(ij, /), LN(-iij, /)) measures the 

degree to which the atom and its negation are unnecessary (recall that high values 

of LS indicate sufficiency and low values of LN indicate necessity). Given that 

LS(a, b) = LN(->a, 6), we can simplify the definition to 

D(f)= E (mm(—^,—-V^) + min(XS(ij,/),I5(S-,/)))   • 

In this form, the difficulty of the function true would be 2M, where M is the number 

of input bits, because each of the bits is unnecessary and insufficient for the function. 

We can correct for irrelevant input bits by subtracting 2 for every bit that has no 
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effect on the value of /, yielding 

D(f) = £ (min(l5fL_, jg^r-rf + min(ISfe, /), LS(^ /))) - 2C , 

where C is the number of input bits that have no effect on the value of /. 

The definition uses LS and LN rather than S and N, because LS and LTV have 

well-understood ranges, with values of 1 indicating lack of necessity and sufficiency. 

Because S and N are monotonic in LS and LN, distinctions that are apparent 

when using LS and LN, which is what are measured by D, will also be apparent 

when using 5 and N. When the input bits all have an effect on the value of /, but 

are completely unnecessary and insufficient for /, its difficulty will be IM. 

The values of LS and LN depend on being able to evaluate the probability of a 

particular input vector arriving; thus, this measure assumes that there is some fixed 

distribution on the input vectors. If there is no such fixed distribution (as we have 

argued may not be the case in many embedded learning scenarios), the difficulty 

could be defined to be the supremum over all possible distributions. 

This difficulty measure can be illustrated by considering the space of possible 

Boolean functions on three input bits, in which the individual input vectors are 

assumed to be uniformly distributed. Following Schlimmer [62], the set of 3-input 

Boolean functions can be divided into 19 classes, which are equivalence classes under 

permutation and negation of the input bits. Table 7 uses Schlimmer's numbering 

system, giving a representative function from each class and its D measure. The 

classes, going from easy to difficult are ordered as follows: 

{0,4c,8}, {2c, 6c}, {1,7}, {Ad}, {36,56}, {4c}, {3a, 5a}, {4a}, {26,66}, {46}, {2a,6a} . 

Interestingly, all functions with difficulty less than 3 are linearly separable and those 

with difficulty greater than 3 are not. Also, D seems to measure the difficulty of 

problems for STAGGER more accurately, in many cases, than the measure used by 
Schlimmer.12 

"Schlimmer used a measure of the dependence of the concept on the input bits which is based on 
Fisher's [23] work on category utility. 
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CLASS / W) 
0. false 0.00 
1. aAlAc 1.28 

2a. (a A b A c) V (-.a A -«6 A ->c) 6.00 
2b. aA((6Ac)VH>A^c)) 4.33 
2c. a Ab 0.67 
3a. (a A 6) V (la A-iiA ~^c) 3.47 
3b. a A (6 V c) 2.50 
4a. (a A -16) V (-«a A 6) 4.00 
4b. (a A (b V c)) V (-ia A -■& A ^c) 4.67 
4c. (a A c) V (--6 A -ic) 3.33 
4d. (a A b) V (fc A c) V (c A a) 2.00 
4e. a 0.00 
5a. (a V 6) A (-.a V -.6 V -ic) 3.47 
5b. a V (b A c) 2.50 
6a. (a V 6 V c) A (-.a V i6 V ->c) 6.00 
6b. a V ((6 V c) A (-nfe V ->c)) 4.33 
6c. aV6 0.67 
7. aV6Vc 1.28 
8. true 0.00 

Table 7: Difficulties of classes of 3-input Boolean functions. 
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7.8.3    Promotion Age 

The choice of values for the age parameter depends on how long it takes for the 

er, N, and S statistics to come to be a good indication of the values they are 

estimating. If reinforcement has a high variance, for instance, it may take more 

examples to get a true statistical picture of the underlying processes. If the value of 

R is large, causing new combinations to be made infrequently, it is often important 

for promotion age to be large, ensuring that the data that guides the combinations 

is accurate. If R is small, the effect of occasional bad combinations is not so great 

and may be outweighed by the advantage of moving candidate hypotheses more 

quickly to the working hypothesis list. 

7.8.4    Rate of Generating Hypotheses 

The more frequently new hypotheses are generated, the sooner the algorithm will 

construct important subexpressions and the more closely it will track a changing 

environment. However, each new hypothesis that has a promising value of er will 

be executed a number of times to see if its value of erp is as high as that of the 

current best hypothesis. In general, most of these hypotheses will not be as good as 

the best existing one, so using them to choose actions will decrease the algorithm's 

overall performance significantly. 

7.8.5    Maximum New Hypothesis Tries 

The attempt to make a new hypothesis can fail for two reasons. Either the newly- 

created hypothesis already exists in the working or candidate hypothesis list of the 

level for which it was created or the expression associated with the hypothesis was 

subject to one of the reductions of Appendix B, causing it to be inappropriate for 

this level. It is possible, but very unlikely, to have more than H + C failures of the 

first type. The number of failures of the second type is harder to quantify. 
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7.9    Empirical Results 

This section describes a set of experiments with the GTRL algorithm. First, the 

operation of the GTRL algorithm is illustrated by discussing a sample run. Then, 

the dependence of the algorithm's performance on the settings of its parameters 

is explored. Finally, the performance of the GTRL algorithm is compared with the 

algorithms of the previous chapter on Tasks 5, 6, and 7. 

7.9.1 Sample Run 

Figure 49 shows the trace of a sample run of the GTRL algorithm. It is executed 

on Task 8, a binomial Boolean-expression world13 with 3 input bits, in which the 

expression is (bo V&i) A(6i Vb2), pi3 = .9, pi„ = .1, po» = .1, and po„ = -9. The figure 

shows the state of the algorithm at ticks 50, 100, and 250. The report for each tick 

shows the working hypotheses for each level, together with their statistics. 14 In 

order to save space in the figure, only the four most predictive working hypotheses 

are shown at each level. At tick 50, the two component hypotheses, 60Afci and bt A 62, 

have been constructed. They both have high levels of sufficiency, which makes them 

good operands for disjunction. By tick 100, the correct disjunction has been made, 

and the most predictive hypothesis is the optimal hypothesis (b0 A 6X) V (bi A b2). 

At tick 250, the optimal hypothesis is still winning and the average reinforcement 

is approaching optimal. 

7.9.2 Effects of Parameter Settings on Performance 

The section describes a set of experiments that illustrate how learning performance 

varies as a function of the values of the parameters PA, R, and H on Task 8, 

which was described in the previous section. The parameter L was set to 3, za/2 

to 2, C to be equal to H, and T to 100. Figures 50, 51, and 52 show the results, 

13Binomial Boolean-expression worlds are defined in Section 6.5.1. 
14The age statistic reported in the trace is the number of times the hypothesis has been chosen 

to generate actions, rather than the value of age, which is the number of times this hypothesis has 
agreed with the ones that have been chosen to generate actions. 
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••*•*•  lick   50 Snaaary •••••• 
 L«»«l 0  
PV ■ 850.9243 EPPUB ■ 0.92 EP « 0.85 I ■ 0.87 S » 0.84 AGE » 14 B : 1 
PV - 834.0000 EPPUB ■ 1.00 EP - 0.83 I - 0.69 S - 0.94 IGE • 0 H : 2 
PV ■ 770.0000 EPPUB m 1.00 EP - 0.77 I ■ 0.76 S » 0.78 AGE » 0 H : 0 
PV ■ 751.0000 EPPUB m 1.00 EP » 0.75 I ■ 0.75 S a •*•• AGE ■ 0 H : * 
 U»«l 1  
PV - 904.9776 EPPUB m 0.98 EP - 0.90 ■ - 0.85 S - 1.00 AGE - 8 B : (and 1 2) 
PV - 894.9699 EPPUB « 0.97 EP - 0.89 ■ - 0.80 5 « 1.00 AGE ■ 6 I : (and 0 1) 
PV - 882.8600 EPPUB ■ 0.85 EP - 0.88 I ■ 1.00 S - 0.87 AGE - 4 E : (or 0 2) 
PV » 847.0000 EPPUB B 1.00 EP - 0.85 I • 0.67 8 - 0.90 AGE - 0 H : (or 1 (not 0)) 
 L«T«1 2  
PV - 866.9055 EPPUB ■ 0.91 EP ■ 0.87 I ■ 0.75 S - 0.91 AGE - 2 E (or (and 1 2) (or 1 2)) 
PV - 819.0000 EPPUB m 1.00 EP - 0.82 I « 1.00 S - 0.78 AGE - 0 I (or 0 (and 1 2)) 
PV ■ 728.0000 EPPUB m 1.00 EP ■ 0.73 I ■ •••* S - 0.73 AGE - 0 E (or 0 (or 1 2)) 
*** »»in* ■ (  37 / 50) 74.00* Long tora ■ (  37 / 50) 74.00X •*» 

••••*•  tic*  loo s imaary ****** 
 L«T«1 0  
PV - 898.9243 EPPUB ■ 0.92 EP « 0.90 I * 0.90 S » 0.90 AGE « 14 B 1 
PV ■ 876.0000 EPPUB m 1.00 EP ■ 0.87 ■ » 0.81 S - 0.94 AGE - 0 E 2 
PV « 850.0000 EPPUB « 1.00 EP ■ 0.85 ■ - 0.85 S « *••• AGE » 0 B f 
PV - 844.0000 EPPUB m 1.00 EP - 0.84 ■ - 0.88 S - 0.81 AGE - 0 E 0 
 L«T«1 1  
PV * 931.9699 EPPUB ■ 0.97 EP - 0.93 I - 0.90 S » 1.00 AGE ■ 6 B (and 0 1) 
PV - 927.9801 EPPUB ■ 0.98 EP - 0.93 I - 0.89 S ■ 1.00 AGE ■ 9 B (and 1 2) 
PV - 914.0000 EPPUB m 1.00 EP » 0.91 I ■ 0.91 S - 0.93 AGE - 3 B (and 2 (not 0)) 
PV « 911.8500 EPPUB m 0.85 EP ■ 0.91 I - 1.00 S - 0.88 AGE " 4 B (or 0 2) 
 L«T«1 2  
PV « 962.9706 EPPUB ■ 0.97 EP - 0.96 I » 0.94 S * 1.00 AGE ■ 19 B (or (and 0 1) (and 1 2)) 
PV « 947.90SS EPPUB » 0.91 EP - 0.95 I ■ 0.96 S - 0.92 AGE - 2 E (and (or 0 2) (or 1 (not 2))) 
PV ■ 945.7935 EPPUB ■ 0.79 EP ■ 0.95 ■ - 0.96 S - 0.92 AGE - 1 E (or (and 0 1) (and 2 (not 0))) 
PV - 940.0000 EPPUB m 1.00 EP ■ 0.94 I ■ 0.94 S - 0.94 AGE « 0 E (and (or 0 1) (or 0 2)) 
••• Rainf * (  45 / 50) 90.00% Long ton » (  82 / 100) 82.002 ••• 

Su—in y •••••• 
 LOTOI 0  
PV ■ 925.9243 EPPUB ■ 0.92 EP - 0.93 ■ - 0.93 S - 0.92 AGE - 14 B 1 
PV » 891.0000 EPPUB » 1.00 EP - 0.89 I - 0.89 S - 0.89 AGE - 0 B 0 
PV » 886.0000 EPPUB m 1.00 EP - 0.89 I - 0.95 S - 0.80 AGE - 0 E (not 2) 
PV - 886.0000 EPPUB m 1.00 EP - 0.89 I - 0.89 S » •••• AGE ■ 0 E t 
 L«TOl 1  
PV - 927.0000 EPPUB m 1.00 EP - 0.93 I - 0.96 S - 0.91 AGE - 0 E (or 1 (not 2)) 
PV » 922.9699 EPPUB m 0.97 EP - 0.92 I - 0.91 S - 0.95 AGE ■ 6 I (and 0 1) 
PV - 921.0000 EPPUB m 1.00 EP - 0.92 I - 0.92 S - 0.92 AGE - 0 ■ (or 1 (not 0)) 
PV » 917.0000 EPPUB m 1.00 EP - 0.92 I » 0.95 S - 0.90 AGE - 0 I (or 0 1) 
 LOTOI 2  
PV - 931.9491 EPPUB m 0.95 EP - 0.93 ■ - 0.92 S - 0.95 AGE - 166 B (or (and 0 1) (and 1 2)) 
PV - 928.9055 EPPUB m 0.91 EP ■ 0.93 I - 0.93 S - 0.93 AGE » 2 B (and (or 0 2) (or 1 (not 2))) 
PV - 921.0000 EPPUB m 1.00 EP - 0.92 I ■ 0.90 S ■ 0.94 AGE » 0 E (and (or 0 1) (or 0 2)) 
PV - 916.8500 EPPUB m 0.85 EP ■ 0.92 I ■ 0.91 S - 0.92 AGE - 4 E (or (and 0 1) (and 2 (not 0))) 
••* l*inf ■ (  46 / 60) 92.00t L ong ton ■ ( 219 / 250) 87.60S •*• 

Figure 49: A sample run of the GTRL algorithm. 
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er 

100 
PA 

Figure 50: Performance versus parameter value PA for Task 8. 

plotting average reinforcement per tick on 100 runs of length 3000 against each of 

the remaining parameters, PA, R, and H. 

The expected reinforcement is maximized at a low value of PA, the promotion 

age of candidate hypotheses, because it is relatively easy to discriminate between 

good and bad actions in Task 8. When the probabilities of receiving reinforcement 

value 1 are closer to one another, as they are in the tasks discussed in the next 

section, it becomes necessary to use higher values of PA. Because this task (and all 

of the others discussed in this chapter) is stationary, the only reason to have a low 

value of R, the inverse of the rate at which new hypotheses are generated, is if the 

function is very difficult and hypothesis list is too small to hold all subexpressions 

at once. This is not the case for Task 8, so high values of R are desirable. Finally, 

performance increases with the length of the hypothesis lists, H, in every task. 

Because this task is relatively easy, however, the correct answer is usually found 

fairly quickly with even small values of H, so the increase is not dramatic (this is 

evidenced by the small range of er in Figure 52.) 
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200 

R 

Figure 51: Performance versus parameter value R for Task 8. 

H 

Figure 52: Performance versus parameter value H for Task 8. 
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Task/Par am PA     R     H Results 
5 
6 
7 

35    200   30 
10    100   30 
45    110   20 

.5648 

.7879 

.7877 

Table 8: Best parameter values for GTRL on Tasks 5, 6, and 7 from Chapter 6. 

7.9.3    Comparison with Other Algorithms 

The GTRL algorithm was tested on Tasks 5, 6, and 7 from Chapter 6. The best values 

of the parameters for each task were determined through extensive testing, and are 

shown in Table 8. Some of the values are arbitrarily cut off where the parameter 

testing stopped. For instance, performance on Task 5 might be improved with higher 

values of PA and performance on Task 6 would be improved with higher values of H. 

The average reinforcement per tick of executing GTRL at these parameter settings 

on 100 runs of length 3000 are shown in the final column of the table. 

Figure 53 is a modified version of Figure 42, with the results of the GTRL al- 

gorithm included with those of the algorithms of Chapter 6 for Tasks 5, 6, and 7. 

On Tasks 5 and 6, the GTRL algorithm performs significantly better than the LARC, 

LARC+, and BP algorithms, but not as well as IE, IEKDNF, or LARCKDNF. Finally, 

on Task 7, the real advantage of GTRL is illustrated. On a task with a large number 

of inputs, GTRL works efficiently and is significantly outperformed only by IEKDNF. 

The learning curves of GTRL on each of the tasks are shown in Figures 54, 55 

and 56. They are superimposed on the learning curves of the algorithms tested in 

Chapter 6; the GTRL curves are drawn in bold lines. 

This comparison is, to some degree, unfair, because the GTRL algorithm is de- 

signed for nonstationary environments. We can see in the learning curves that, 

although it improves quickly early in run, it does not reach as high a steady-state 

level of performance as the other algorithms. It does not converge to a fixed state, 

because it is always entertaining new competing hypotheses. This flexibility causes 

a large decrease in performance. If the GTRL algorithm is to be applied in a domain 

in which changes, if any, are expected to take place near the beginning of a run, 
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TASK 5 TASK 6 

LARCKDNF 

LARC 

LARCKDNF 

TASK 7 IEKDNF 

GTRL 

LARC 

LARC+ 

Figure 53: Significance of GTRL results on Tasks 5, 6, and 7, compared with the 
results of the algorithms of Chapter 6. 
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er 
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bucket  of 100 ticks 

y  iekdnf 
£- opt 

ie 
larckdnf 

o*^ random 

Figure 54: GTRL learning curve for Task 5 (bold) compared with the algorithms of 
Chapter 6. 

er 

5 10 15 20 25 
.   bucket  of 100 ticks 

opt 
ie 

«* iekdnf 
larckdnf 

random 
30 

Figure 55: GTRL learning curve for Task 6 (bold) compared with the algorithms of 
Chapter 6. 
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er 

0.82 

0.8 

0.78 

0.76' 

0.74' 

0.72' 

0.68 

opt 

10 15        20        25 

random 
bucket of 100 ticks 

Figure 56: GTRL learning curve for Task 7 (bold) compared with the algorithms of 
Chapter 6. 

performance can be improved by decreasing over time the rate at which new can- 

didate hypotheses are generated. This will cause the algorithm to spend less time 

experimenting and more time acting on the basis of known good hypotheses. 

7.10    Conclusions and Extensions 

We have seen that the GTRL algorithm can be used to learn a variety of Boolean 

function classes with varying degrees of effectiveness and efficiency. This chap- 

ter describes only a particular instance of a general, dynamic generate-and-test 

method—there are a number of other possible variations. 

The algorithm is designed so that other search heuristics may be easily accommo- 

dated. An example of another, potentially useful, heuristic is to combine hypotheses 

that are highly correlated with the optimal hypothesis. One way to implement this 

heuristic would be to run a linear-association algorithm, such as LARC, over the in- 

put bits and the outputs of the newly-created hypotheses, then make combinations 

of those hypotheses that evolve large weights. It is not immediately apparent how 

this would compare to using the N and S heuristics. 
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Another possible extension would be to add genetically-motivated operators, 

such as crossover and mutation, to the set of search operators. Many genetic meth- 

ods are concerned only with the performance of the final result so this extension 

would have to be made carefully in order to preserve good on-line performance. 



Chapter 8 

Learning Action Maps with State 

All of the algorithms that we have considered thus far are capable of learning only 

actions maps that are pure, instantaneous functions of their inputs. It is more 

generally the case, however, that an agent's actions must depend on the past history 

of input values in order to be effective. By storing information about past inputs, 

the agent is able to induce a finer partition on the set of world states, allowing it to 

make more discriminations and to tailor its actions more appropriately to the state 

of the world. 

Perhaps the simplest way to achieve this finer-grained historical view of the world 

is to simply remember all input instances from the last k ticks and present them in 

parallel to the behavior-learning algorithm. This method has two drawbacks: it is 

not possible for actions to depend on conditions that reach back arbitrarily far in 

history and the algorithmic complexity increases considerably as the length of the 

available history is increased. 

This chapter will present an alternative approach, based on the GTRL algorithm, 

which can efficiently learn simple action maps with temporal dependencies that go 

arbitrarily far back in history. 

133 
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" _TL r 

SR(a,b) r 
Figure 57: Timing diagram for a set-reset flip-flop. 

8.1    Set-Reset 

A common component in hardware logic design is a set-reset (SR) flip-flop.1 It has 

two input lines, designated set and reset, a clock, and an output line. Whenever the 

clock is triggered, if the set line is high, then the output of the unit is high; else, if 

the reset line is high, the output of the unit is low; finally, if both input lines are 

low, the output of the unit remains the same as it was during the previous clock 

cycle. The value of the output is held in the determined state until the next clock 

tick. 

The behavior of an SR flip-flop can be described logically in terms of the follow- 

ing binary Boolean operator 

SR(a, b) = a V (-.& A «SR(a, b)) , 

where • is the temporal operator "last." Figure 57 shows a timing diagram, in 

which the top two lines represent a time-history of the values of wires a and 6 and 

the bottom line represents the time history of the values of SR(a, 6), the output of 

a set-reset flip-flop whose inputs are wires a and b. 

In the logical definition of SR as a Boolean operator, no initial value is specified. 

This problem is dealt with by adding a third logical value, ±, which means, intu- 

itively, "undefined." When an expression of the form SR(a, 6) is to be evaluated for 

the first time, it is assumed that the value of «SR(a, b) is ±. The value _L combines 

Components of this kind are also commonly referred to as RS (reset-set) flip-flops in the logic- 
design literature. 
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with the other logical values as follows: 

true V -L = true 

false V± = J_ 

iVl = 1 

true A JL = ± 

false A ± = false 

_LA± = ± 

i± = ± 

Thus, the expression SR(a,6) will have value J_ until either a = true, in which 

case SR(a, 6) = true V ... = true, oro= false and b = true, in which case 

SR(a, b) = false V (false A ±) = false. 

8.2    Using SR in GTRL 

In the original version of the GTRL algorithm, the hypotheses were pure Boolean 

functions of the input bits. This section describes an extended version of that 

algorithm, called GTRL-S, which has simple sequential networks as hypotheses. 

8.2.1    Hypotheses 

The GTRL-S algorithm is structured in exactly the same way as the GTRL algorithm. 

The main difference is that SR is added as another binary hypothesis-combination 

operator. This allows hypotheses such as 

SR(-n&o, &i A hi) A (&! V SR(SR(6o, &i), ^b2) , 

which represents the sequential network shown in Figure 58, to be constructed. 

This operator does not allow every possible sequential circuit to be generated, 

however. In the pure-function case it was not necessary to have a negation operator 

because DeMorgan's laws guarantee that having access to the negated atoms is 
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bo   j c 

1  
SR 

b>  1  H-J 

SR r^-^ 
 C 

SR 

E> 

Figure 58:   A sample sequential network, described by SR(-i&o>&i A b2) A (6j V 
SR(SR(6o,6i),-&2) 

►—c 

SR 

Figure 59: This circuit generates the sequence 0,1,0,1,...; because it has feedback, 
it cannot be constructed by the GTRL-S algorithm. 

sufficient to generate any Boolean function. Unfortunately, negation cannot be 

moved past the SR operator in any general way, so, for instance, a sequential circuit 

equivalent to -iSR(t'o,ti) cannot be generated by applications of the SR operator 

to atoms and their negations. This deficiency can be simply remedied by adding a 

unary negation operator or by adding an operator NSR, which is defined as 

NSR(a,6) = -1SR(a,6) . 

Another deficiency is that the construction of sequential networks with feedback 

is not allowed. Thus, the circuit shown in Figure 59, which generates the sequence 

0,1,0,1,..., cannot be constructed. For agents embedded in realistic environments, 

this limitation may not be too great in practice. We would not, in general, expect 
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such agents to have to make state changes that are not a function of changes in the 

world that are reflected in the agent's input vector. There is one additional limita- 

tion that is both more serious and more easily corrected. With the semantics of SR 

defined as they are, it is not possible to construct an expression equivalent to »a. 

One way to solve this problem would be to redefine SR(a, b) as •aV(«-ifcA«SR(a, b)). 

In that case, «a could be expressed as SR(a, ->a), but the search heuristics to be 

used in GTRL-S (described in Section 8.2.3) would no longer be applicable. Another 

option would be to add • as a unary operator, along with negation. This is a rea- 

sonable course of action; it is not followed in this chapter, however, both because it 

would complicate the exposition and because no appropriate search heuristics for 

the last and negation operators are known. 

In addition to the syntactic expression describing the network and the necessary 

statistics (discussed in Section 7.3), a hypothesis also contains the state of each 

of its SR components. When a new hypothesis is created with SR as the top-level 

operator, that component's state is set to _L The state of SR components occurring 

in the operands is copied from the operand hypotheses. In order to keep all state 

values up to date, a new state-update phase is added to the update function. In 

the state-update phase, the new state of each SR component of each hypothesis is 

calculated as a function of the input vector and the old state, then stored back into 

the hypothesis. The result of this calculation may be 1, 0, or J_. 

Expressions containing SR operators may be partially simplified using an ex- 

tension of the simplification procedure used for standard Boolean expressions. This 

extended simplifier is also described in Appendix B. 

8.2.2    Statistics 

The statistical modules for GTRL-S differ from GTRL only when satisfies(i, h) returns 

the value ±. In that case, none of the statistics is updated. Once satisfies(i, h) 

becomes defined for any input i, it will remain defined for every input, so this has 

no effect on the distribution of the instances for which statistics are collected, just 

on when the collection of statistics begins. 
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8.2.3 Search Heuristics 

The problem of guiding the search for generating sequential networks is considerably 

more difficult than for pure functional networks. Statistics collected about the 

performance of expressions as generators of actions in the world are not necessarily a 

strong indication of their performance as the set or reset signal of an SR component. 

They can still provide some guidance, however. 

Recall the logical definition of SR as 

SR(a, 6) = a V (-16 A »SR(a, b)) . 

First, we can see that a —► SR(a, b) and that SR(a, b) —► (a V ->6). The first 

observation should guide us to choose set operands that are sufficient for the target 

hypothesis. The second observation is slightly more complex, due to the fact that 

set takes precedence over reset, but it makes it reasonable to choose reset operands 

whose negations are necessary for the target hypothesis. From these observations 

we can derive the following heuristic: 

When making a set-reset hypothesis, use a set operand that has a h^igh 

value of sufficiency and a react operand whose negation has a high value 

of necessity. ! 
? 

8.2.4 Complexity 

The computational complexity of the GTRL-S algorithm is the same as that of GTRL, 

which is discussed in Section 7.7. The only additional work performed by GTRL-S 

is the state-update computation. It has complexity 0(L(H + C)2L) (assuming that 

H and C are independent of level), which is of the same order as the statistical 

updating phase that occurs in both algorithms. 

8.3    Experiments with GTRL-S 

This section documents experiments with GTRL-S in some simple domains that 

require action mappings with state.   There are no direct comparisons with other 
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algorithms because no other comparable algorithms that learn action mappings 

with state from reinforcement are known. 

8.3.1    Lights and Buttons 

The first domain of experimentation is very simple. It can be thought of as con- 

sisting of two light-bulbs and two buttons. The input to the agent is a vector of 

two bits, the first having value 1 if the first light bulb is on and the second having 

value 1 if the second light bulb is on. The agent can generate two actions: action 0 

causes the first button to be pressed and action 1 causes the second button to be 

pressed. One or no lights will be on at each instance. The optimal action map is to 

push the button corresponding to the light that is on if, in fact, a light is on. If no 

lights are on, the optimal action is to push the button associated with the light that 

was last on. A light is turned on on a given tick with probability pi—the particular 

light is chosen randomly and equiprobably. Thus, the optimal hypothesis is simply 

SR(&i,&o)- 

Figure 60 shows parts of the trace of a sample run of the GTRL-S algorithm in the 

simple lights and buttons domain, in which the correct action (as discussed above) 

yields reinforcement value 1 with probability .9 and the incorrect action yields rein- 

forcement value 1 with probability .1. A light comes on each tick with probability 

.1. The first section of the trace shows the state of the algorithm after 100 ticks. 

We can see that the correct hypothesis, SR(fci,&o)>2 has just been found and ap- 

pears to be the best. After 200 ticks, we can see two recently-created hypotheses 

being tested. They are found wanting, however. By tick 500, the original winning 

hypothesis is still near the top of the list, surpassed only by another equivalent ex- 

pression, SR(-i&o, _,6i). The GTRL-S algorithm works quite reliably on this problem 

because the search heuristics provide good guidance. In the statistics of the atomic 

hypotheses at level 0, it is easy to see that 6x is the most sufficient hypothesis and 

->&o is the most necessary. 

2The third value in the SR expressions of the printout indicates the stored value of the unit: t 
for 1, nil for 0, and bottom for ± (which does not happen to occur in this trace.) 
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•••*•• Tick  100 Smnurj •••*•* 

 Unl 0  
PV - 760.7848 EPPUB B 0.78 EP ■ 0.76 ■ ■ > 0.74 S - 0.80 AGE - 8 I: 1 
PV » 734.8910 EPPUB » 0.89 EP * 0.73 1 > > 0.73 s - -1.00 AGE ■ 15 1: f 
PV ■ 700.8619 EPPUB * 0.86 EP m 0.70 ■ ■ > 1.00 S " 0.67 AGE - 21 B: (not 0) 

PV ■ 641.0000 EPPUB ■ 1.00 EP m 0.64 I > > 0.71 8 - 0.00 AGE - 0 H: 0 
PV - 608.0000 EPPUB ■ 1.00 EP m 0.61 I • ■ -1.00 s ■ 0.61 AGE - 1 I: t 
PV ■ 884.0000 EPPUB m 1.00 EP m 0.58 I > ■ 0.50 s ■ 0.59 AGE > 0 I: (not 1) 

 UTII 1  
PV » 793.9776 EPPUB u 0.98 EP m 0.79 1 ■ ■ 0.79 s - 1.00 AGE - 8 I: (■r 1 0 nil] 
PV - 724.9285 EPPUB m 0.93 EP m 0.72 I ■ ■ -1.00 s ■ 0.72 AGE - 8 H: (>r (not 0) 1 t) 
Pf « 715.0000 EPPUB m 1.00 EP m 0.71 I ■ > -1.00 s » 0.71 AGE ■ 0 H: (or (not 0) (not D) 
PV ■ 710.0000 EPPUB u 1.00 EP m 0.71 I ■ ' 0.72 s - 0.50 AGE - 0 H: (»r 1 (not 0) nil) 
PV ■ 704.0000 EPPUB m 1.00 EP m 0.70 ■ > > -1.00 s ■ 0.70 AGE > 0 H: (sr (not 1) 0 t) 

PV » 654.0000 EPPUB m 1.00 EP m 0.6S I > > 0.67 s « 0.50 AGE - 0 I: (or 0 1) 
••• Boinf » (  67 / 100) 67.00t Lonj ; tor» - ( 67 / 100) 67.00X ••• 

•••••• Tick  200 Si 
▼•1 0  

ury 
 L« 
PV » 815.8619 EPPUB » 0.86 EP 0.82 I > • 0.89 s - 0.81 AGE - 21 I: (not 0) 
PV - 774.7848 EPPUB m 0.78 EP 0.77 1 > • 0.77 s - 0.82 AGE - 8 I: 1 
PV ■ 774.0000 EPPUB ■ 1.00 EP 0.77 I » ■ -1.00 s ■ 0.77 AGE - 1 E: t 
PV « 758.0000 EPPUB ■ 1.00 EP 0.76 I > > 0.33 s - 0.77 AGE « 0 H: (not 1) 
PV ■ 752.8910 EPPUB m 0.89 EP 0.76 I " ■ 0.75 s - -1.00 AGE - 15 H: t 
PV - 692.0000 EPPUB « 1.00 EP 0.69 I > ■ 0.74 s - 0.00 AGE - 0 I: 0 
 L«Y«1 1  
PV - 902.9778 EPPUB m 0.98 EP 0.90 I > • 0.86 s - 0.91 AGE - 25 B: (or 1 (not 0)) 
PV * 898.9615 EPPUB * 0.96 EP 0.90 ■ > ■ 0.00 s - 0.91 AGE - 27 H: (or 0 (not 1)) 
PV ■ 870.9275 EPPUB m 0.93 EP 0.87 ■ > • 0.82 s - 0.92 AGE - 48 H: (»r 10t) 
PV ■ 849.9285 EPPUB m 0.93 EP 0.85 I > » -1.00 s - 0.85 AGE - 8 I: (»r (not 0) 1 t) 
PV ■ 848.0000 EPPUB m 1.00 EP 0.85 I > ■ -1.00 s - 0.85 AGE - 0 B: (or (not 0) (not D) 
PV - 812.8632 EPPUB m 0.86 EP 0.81 I > > 0.81 s * 0.83 AGE - 8 B: (and 1 (not 0)) 
*•• Rainf ■ (  86 / too) 86.00% Lon, ; t«za > • { 153 / 200) 76.SOt ••* 

•••*•• Tick  600 Soaaary •••*** 

 L«»«l 0-  X 
PV ■ 859.8619 EPPUB m 0.86 EP m 0.86 I > • 0.89 s ■ 0.86 AGE - 21 I: (not 0) 
PV - 844.7848 EPPUB m 0.78 EP m 0.84 I > • 0.84 s - 0.90 AGE - 8 B: 1 
PV ■ 844.0000 EPPUB m 1.00 EP m 0.84 ■ > ■ -1.00 s - 0.84 AGE - 1 B: t 
PV ■ 830.0000 EPPUB m 1.00 EP m 0.83 I > • 0.26 s - 0.84 AGE - 0 B: (not 1) 
PV - 825.8910 EPPUB m 0.89 EP m 0.82 I > • 0.82 s - -1.00 AGE - 16 B: 1 
PV « 797.0000 EPPUB ■ 1.00 EP m 0.80 I • • 0.82 s - 0.17 AGE - 0 fl: 0 
 Unl 1  
PV - 913.9344 EPPUB ■ 0.93 EP m 0.91 I ■ ■ 0.67 8 - 0.92 AGE - 43 B: (sr (not 0) (not 1) t) 

PV - 898.9231 EPPUB m 0.92 EP - 0.90 I ■ • 0.86 s - 0.92 AGE - 245 B: (ar 10t) 
PV - 890.9468 EPPUB - 0.95 EP ■ 0.89 I > • 0.88 s ■ 0.89 AGE - 41 B: (or 1 (not 0)) 
PV - 890.9335 EPPUB m 0.93 EP ■ 0.89 ■ ' « -1.00 S ■ 0.89 AGE - 33 I: (sr (not 1) 0 t> 
PV " 886.9838 EPPUB m 0.98 EP * 0.89 ■ > • 0.00 s - 0.89 AGE - 11 B: (■r (not 1) (not 0) t) 
PV ■ 881.9615 EPPUB m 0.96 EP « 0.68 I < ■ 0.00 s ■ 0.89 AGE - 27 B: (or 0 (not D) 
••• loinf ■ (  89 / 100) 89.00t Lon J t«za - ( 418 / 500) 83.60t ••• 

Figure 60: A sample run of the GTRL-S algorithm on the simple lights and buttons 
problem 
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8.3.2    Many Lights and Buttons 

The lights-arid-buttons domain described in Section 8.3.1 can be easily extended 

to have an arbitrary number, M, of lights and buttons. If we let each input bit 

correspond to a light and each output bit correspond to the pressing of a button, 

we have an environment with M input and M output bits. The agent is never 

rewarded for pressing more than one button at once. 

The more complex lights-and-buttons problem can be solved by using the CAS- 

CADE method in conjunction with GTRL-S, with one copy of the GTRL-S algorithm 

for each bit of output (corresponding to each button.) Figure 61 shows excerpts 

from a sample run with two lights and two buttons (this differs from the domain 

described in the previous section in that there are two output bits rather than only 

one.) The first two levels belong to the instance of GTRL-S for the first output 

bit and the second two levels belong to the second instance of GTRL-S. After the 

first 100 ticks, neither instance has found the correct hypothesis and the perfor- 

mance is quite poor. By tick 200, however, the best hypothesis for the first bit 

is SR(-i&i,-i6o), which is equivalent to SR(6o,&i), the correct function. The best 

hypothesis for the second bit is SR(fei, &o), which is also correct. Again, it is easy to 

verify that the necessity and sufficiency heuristics are a good guide for the search. 

The search heuristics for SR fail us when we wish to extend this problem to a 

larger number of lights and buttons using a cascade of 3-level instances of GTRL-S. 

When there are three lights and buttons, the optimal function for the first bit can 

be most simply expressed as SR(&o, &i V 62)- In order to synthesize this expression, 

the expression -ib1A->b2 must be available at the previous level. For that to happen, 

-ibi and ->b2 must be highly sufficient, which is false, in general. Thus, the only 

way to learn this function is to generate all sub-expressions exhaustively, which is 

computationally prohibitive. 
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••••••  Tick  100 Stuaary •••••• 

■L«T«1 0  

PV « •  329.7308 EPPUB • ■ 0.73 EP > > 0.33 I > > 0.29 8 ■ > 1.00 AGE > >  22 I 0 
PV i '      276.0000 EPPUB > > 1.00 EP > > 0.28 I > ' 0.28 S > ' -1.00 AGE > 3 H 1 
Pf > ■  260.0000 EPPUB > ■ 1.00 EP ■ > 0.26 1 > ■ 0.27 S > > 0.00 AGE > 1 I 1 
  ■Unl 1  
PV ■ >  344.4019 EPPUB > • 0.40 EP ■ > 0.34 I > • 0.29 S • > 0.83 AGE > >  40 I (or 0 1) 
P? " •  328.0000 EPPUB > ■ 1.00 EP > • 0.33 I > > 0.26 S > ■ 1.00 AGE • ■   o ■ (ar 0 (not 1) nil) 
PV > >  291.0000 EPPUB > ■ 1.00 EP > > 0.29 I • ■ 0.29 S > ■ -1.00 AGE • •   0 I (and 0 1) 
PV > •  260.0000 EPPUB > ' 1.00 EP . • 0.26 I > > 0.26 S • > 0.00 AGE > 0 E (ar 1 (not 0) nil) 
  ■Unl 0  
PV " >  428.5673 EPPUB • ■ 0.57 EP ■ ' 0.43 I > ■ 0.86 S > > 0.33 AGE • >  51 I (not 2) 
PV • >  419.5131 EPPUB > > 0.51 EP > ' 0.42 ■ > ■ 0.42 S • ■ -1.00 AGE > 7 I 1 
PV > >  411.6576 EPPUB ■ > 0.66 EP > > 0.41 ■ > ■ 0.42 S > > 0.33 AGE • 2 H 1 
PV ■ ■  370.0000 EPPUB ■ • 1.00 EP > ■ 0.37 I ■ • 0.83 S > > 0.33 AGE > >   0 H (not 0) 
PV « •  319.0000 EPPUB > > 1.00 EP • • 0.32 I > • -1.00 S > > 0.32 AGE > >   0 H t 
PV ■ >  319.0000 EPPUB > « 1.00 EP > ■ 0.32 1 > ■ -1.00 s > > 0.32 AGE > >   0 B (not 1) 
PV ■ ■  297.0000 EPPUB > ■ 1.00 EP " ■ 0.30 ■ > ■ 0.32 s > > 0.00 AGE > 0 B 0 
PV ■ >   87.0000 EPPUB > '  1.00 EP ■ < 0.09 ■ > ■ 0.06 s > ' 0.17 AGE > 0 I 2 
  -La»al 1  
PV ' ■  372.7693 EPPUB • • 0.77 EP > « 0.37 I > • 1.00 s > > 0.30 AGE > 6 H (and (not 0) (not 2)) 
PV • •  353.0000 EPPUB > ■ 1.00 EP ■ > 0.35 ■ > ■ 1.00 s > > 0.28 AGE > >   0 I (ar (not 0) 2 t) 
PV « '  341.0000 EPPUB > ' 1.00 EP i > 0.34 ■ > ■ 1.00 s > > 0.27 AGE • >   0 I (or (not 0) (not 2)) 
PV » '  327.0000 EPPUB > • 1.00 EP i > 0.33 ■ > > 1.00 s > ' 0.2S AGE > >   0 H (ar (not 2) 0 t) 
••• Bainf » (  35 / 100) 35 00% Lonj ; tan ■ ■ ( 3B / 1« ))  35.00% ••• 

•••1 '**  Tick  200 Sm 
■UT«1 0  

■tar; ••< >*»* 
— 
PV > >  563.5973 EPPUB > > 0.60 EP ■ > 0.56 I > ■ 1.00 s > ■ 0.55 AGE > .  63 H (not 1) 
PV • >  538.0000 EPPUB > ■ 1.00 EP « • 0.54 I > ■ -1.00 s > > 0.54 AGE > '   1 B t 
PV > '  495.0000 EPPUB > • 1.00 EP > ' 0.49 I > ■ 0.00 s ■ > 0.51 AGE > •   0 I (not 0) 
PV " >  356.7308 EPPUB > ■ 0.73 EP . ' 0.36 I > > 0.30 s ■ » 0.76 AGE > ■  22 H : 0 
PV > >  294.0000 EPPUB > ■ 1.00 EP ■ ■ 0.29 I > ' 0.29 s > ■ -1.00 AGE > >   3 B : f 
PV • •      256.0000 EPPUB > '  1.00 EP ■ > 0.26 1 > > 0.26 S ' > 0.00 AGE < >   1 B : 1 
  ■Unl 1  
PV > ■  511.9743 EPPUB » ' 0.97 EP > • 0.51 I > « 1.00 s > • 0.49 AGE > 7 B : (ar (not 1) (not 0) t 
PV " ■  606.7267 EPPUB > ' 0.73 EP ■ ■ 0.51 I > •    1.00 s < > 0.49 AGE • •      19 E : (and (not 0) (not 1)) 
PV • >  475.0000 EPPUB > ■ 1.00 EP ■ • 0.47 ■ > • -1.00 s > '    0.47 AGE > '   0 B : (ar (not 0) 1 t) 
PV • >  468.0000 EPPUB > > 1.00 EP ■ • 0.47 ■ > ■ -1.00 s > > 0.47 AGE ■ >   0 I : (ar (not 1) 0 t) 
  ■La»al 0  
PV > >  555.6576 EPPUB > ' 0.66 EP • • 0.56 I > • 0.55 s > ■ 0.67 AGE > ■   2 B : 1 
PV ■ ■  549.6988 EPPUB ■ » 0.70 EP • • 0.55 I > > 0.55 s > » -1.00 AGE < >  15 H : f 
PV • ■  517.0000 KPPUB « ■ 1.00 EP < • 0.52 I > > 0.53 s > > 0.00 AGE ■ >   0 B : 0 
PV ' ■  506.5251 EPPUB > ■ 0.53 EP • • 0.51 I < • 0.65 s > • 0.34 AGE > •  68 B : (not 2) 
PV > •  349.0000 EPPUB > ' 1.00 EP • ' 0.35 ■ < • 0.69 s > • 0.30 AGE ■ >   0 B : (not 0) 
PV " >  296.0000 EPPUB > » 1.00 EP < ' 0.30 I > ■ -1.00 s < ■ 0.30 AGE < 0 I : t 
PV ■ >  272.0000 EPPUB > ■ 1.00 EP • ■ 0.27 I ■ ■ -1.00 s > • 0.27 AGE ■ •   0 B : (not 1) 
PV ■ >  137.0000 EPPUB • ■ 1.00 EP • • 0.14 ■ ' ■ 0.11 s < • 0.16 AGE < •   0 B : 2 
  -Laval 1  
PV > ■  «04.5066 EPPUB > » 0.51 EP > • 0.60 I > ■ 0.73 S ■ • 0.29 AGE > ■  28 B : (ar 1 0 nil) 
PV « •  597.7138 EPPUB > » 0.71 EP < • 0.60 ■ > • 0.59 s ■ • 0.80 AGE > •  57 fl : (ar 1 2 nil) 
PV " '  594.0000 EPPUB > ■ 1.00 EP ■ • 0.59 I < ■ 0.58 s > • 1.00 AGE < •   0 B : (and 1 (not 2)) 
PV ■ >  587.0000 EPPUB > « 1.00 EP > ' 0.59 ■ > • 0.58 S ' ■ 0.75 AGE > 0 B : (and 1 (not 0}) 
••• fcainf ■ (  50 / 100) 60 .0« 1 .on I  tar» ■ ( 86 / 2« »  42. 50% ••• 

Figure 61: A sample run of the GTRL-S algorithm on the two-bit lights and buttons 
problem. Only the 4 most predictive hypotheses are shown at each non-atomic 
level. 
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8.4    Conclusion 

Although the approach embodied in GTRL-S is capable of learning some simple 

action maps with state, it does not hold much promise for more complex cases. In 

such cases, it may, in fact, be necessary to learn a state-transition model of the 

world and values of the world states, using a combination of Rivest and Schapire's 

[56] method for learning models with hidden state and Sutton's [72] or Whitehead 

and Ballard's [80] method for "compiling" transition models into action maps. This 

will be a difficult job—currently available methods for learning models with hidden 

state only work in deterministic worlds. Even if they did work in non-deterministic 

worlds, they attempt to model every aspect of the world's state transitions. In 

realistic environments, there will be many more aspects of the world state than the 

agent can track, and its choice of which world states to represent must be guided 

by reinforcement, so that it can learn to make only the "important" distinctions. 

Drescher's work on generating "synthetic items" [18] is a promising step in this 

direction. His "schema mechanism" attempts to learn models of the world that will 

enable problem solving. When it is unsuccessful at discovering which preconditions 

will cause a particular action to have a particular result, it "reifies" that set of 

preconditions as an "item" and attempts to discover tests for its truth or falsity. In 

many cases the reified item turns out to be a particular aspect of the state of the 

world that is hidden from the agent. 



Chapter 9 

Delayed Reinforcement 

Until now, we have only considered algorithms for learning to act in environments 

in which local reinforcement is generated each tick, giving the agent all of the 

information it will ever get about the success or failure of the action it just took. 

This is a simple instance of the more general case, in which actions taken at a 

particular time may not be rewarded or punished until some time in the future. 

This chapter surveys some existing approaches to the problem of learning from 

delayed reinforcement, focusing on the use of temporal difference methods [71], such 

as Sutton's adaptive heuristic critic method [70] and Watkins' Q-learning method 

[78]. It will be shown how these methods can be combined with the pure function- 

learning algorithms presented in previous chapters to create a variety of systems 

that can learn from delayed reinforcement. 

9.1    Q Learning 

There are well-known dynamic programming methods, such as policy improvement 

[57] that can be used for computing the optimal action mapping for an agent, given 

a complete state-transition model of the world. Watkins has developed a method 

for learning from delayed reinforcement that he describes [78] as "incremental dy- 

namic programming by a Monte Carlo method: the agent's experience—the state- 

145 
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Algorithm 16 (Q) The initial state s0 is an array indexed by the set of input states 
and the set of actions, whose elements are initialized to some constant value. 

u(s, i, a, r) =   i[t', a'] = (1 - a)s[i', a'] + a(r + fU(i)) 
e(s,i) = a such that s[i,a] is maximized 

where i' and a' are the input and action values from tickt —1, 0 < or < 1, 0<7<1, 
and U(i) = maxa{s[t,a]}. 

Figure 62: The Q-leaming algorithm. 

transitions and the rewards that the agent observes—are used in place of transition 

and reward models." 

Watkins' method is referred to as Q-learning because it is concerned with learn- 

ing values of Q(i, a), where i is an input, a is an action, and Q(i, a) is the expected 

discounted reward of talcing action a in input state i then continuing by following 

the optimal policy. The agent's policy is always to execute, in input state i, the 

action a for which its estimate of Q(i, a) is maximized. The Q algorithm is described 

formally in Figure 62. 

The initial state of the Q algorithm is simply the array of estimated Q values, 

indexed by the input and action sets. To evaluate an input instance, z, the action, 

a, that maximizes Q(i,a) is generated. The update function adjusts the estimated 

Q value of the previous input and action in the direction of 

r + fU(i) , 

which is the actual reinforcement received, r, plus a discounted estimate of the 

value of the next state, 7t/(t). The function U(i) estimates the value of an input i 

by returning the estimated Q value of the best action that can be taken from that 

state. This update rule illustrates the concept of temporal difference learning, which 

was formulated by Sutton [71]. Rather than waiting until a reinforcement value is 

received and then propagating it back along the path of states that lead up to it, 

each state is updated as it is encountered by using the discounted estimated value 

of the next state as a component of the reinforcement.  Initially, these estimated 
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values are meaningless, but as the agent experiences the world, they soon begin to 

converge to the true values of the states. 

Watkins does not specify what the initial estimated Q values should be. If the 

value 0 is used and the optimal action values are positive, the algorithm will almost 

certainly fail, because it always chooses the action with the highest Q value. As 

soon as one action has positive value associated with it, it will be chosen forever 

more, to the exclusion of the other actions. There are two simple solutions to this 

problem. One is to perform random actions with a certain small probability. This 

guarantees that the whole space will eventually be explored, but can take a long 

time. Also, even if the best states are eventually reached, if they occur only rarely, 

it may not have a significant effect on the Q values. Another solution is to set 

the initial Q values to be higher than any of the actual Q values. This causes a 

process similar to the operation of the IE algorithm, in which the actions are chosen 

alternately until the Q values are driven down to the actual action values. If the 

initial Q values are much too high, however, this process can take a long time; it 

is effective only if a relatively tight upper bound on the action values is known a 

priori. 

As the agent gains experience in the world, the Q values begin to become true 

reflections of the action-values of the states in the world, given that the optimal 

policy is being executed. Watkins proved that, in fact, the Q values will converge 

to the values of the actions under the optimal policy given, among other conditions, 

that each input-action pair is experienced an infinite number of times. 

9.2    Q-Learning and Interval Estimation 

The Q algorithm, as presented above, does not guarantee that each input-action pair 

will be sampled an infinite number of times. It is often the case that a particular 

action has a high Q value in a given state early on and other actions in that state are 

rarely, if ever, tried again. One approach to solving this problem (although it still 

does not guarantee convergence) is to apply the basic idea of interval estimation, 
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Algorithm 17 (IEQ) The initial state is an array indexed by the set of input 
states and the set of actions, whose elements are initial states of a normal or non- 
parametric central-value estimator. 

u(s, i, a, r) =   s[i', a'] := update - stats(s[i'', a^, r + fU(i)) 
e(s,i) = a such that uba(s[i,a\) is maximized 

where 0 < a < 1, 0 < 7 < 1, and U(i) = maxa{er(s[i,a])} (er is the expected 
reinforcement of performing action a in state i). 

Figure 63: The IEQ algorithm. 

choosing the action with the highest upper bound on the underlying Q value. This 

approach is embodied in the IEQ algorithm, shown in Figure 63. 

This algorithm can use either a normal or non-parametric model to estimate the 

expected action values. Using the normal distribution as a model can be dangerous, 

however, because at the beginning of this process, the sample variance is often 

0, which causes the confidence intervals to be degenerate. The normal and non- 

parametric methods for generating confidence intervals were informally discussed in 

Section 4.5.2 and are presented in detail in Appendix A. 

The function U changes over time, making early reinforcement values no longer 

representative of the current value of a particular action. This problem is already 

dealt with, in part, by the nature of the bounded-space non-parametric techniques, 

because only a sliding window of data is kept and used to generate upper bounds. 

However, this does not guarantee that poor-looking actions will be taken periodically 

in order to see if they have improved. One way of doing this is to decay the statistics, 

periodically dropping old measurements out of the sliding windows, making them 

smaller. A similar decay process can be used in the normal statistical model, as well. 

Decaying the statistics will have the effect of increasing upper bounds, eventually 

forcing the action to be re-executed. This method will keep the algorithm from 

absolutely converging to the optimal policy, but the optimal policy can be closely 

approximated by decreasing the decay rate over time. The IEQ algorithm has three 
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parameters: 7, the discount factor, a, the size of the confidence intervals, and 6, 

the decay rate. 

The biggest practical improvement of IEQ over Q is that it is no longer necessary 

to estimate the values of the states in order to generate appropriate initial values. 

In the context of the Dyna architecture [72], Sutton has recently developed a similar 

extension to Q-learning, called Dyna-Q+, in which a factor measuring uncertainty 

about the results of actions is added to the Q values, giving a bonus to exploring 

actions about which little is known. 

9.3    Adaptive Heuristic Critic Method 

Sutton [70,71] has developed a different approach of applying the temporal difference 

method to learning from delayed reinforcement. Rather than learning the value of 

every action in every input state, the adaptive heuristic critic (AHC) method learns 

an evaluation function that maps input states into their expected discounted future 

reinforcement values given that the agent executes the policy it has been executing. 

One way of viewing this method is that the AHC module is learning to transduce 

the delayed reinforcement signal into a local reinforcement signal that can be used 

by any of the algorithms of the previous chapters. The algorithm used to learn 

from the local reinforcement signal need only optimize the reinforcement received 

on the next tick; such an algorithm is referred to as a local (as opposed to global) 

learning algorithm. It is a requirement, however, that the local learning algorithm 

be capable of learning in nonstationary environments, because the AHC module will 

be learning a transduction that changes as the agent's policy changes. 

The AHC method, in combined operation with an algorithm for learning from 

local reinforcement, is formally described in Figure 64. There are two components 

to the state of the AHC algorithm: the vectors v and c. The v vector contains, at 

every tick, the current best estimate of the discounted future value of each state with 

discount rate 7, given that the agent is executing the behavior that it is currently 

executing. The c vector values represent the "activation" values of the states. States 

that have been visited recently have high activation values and those that have not 
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Algorithm 18 (AHC)   The  initial state,   s0,   consists   of three  parts:    two   n- 
dimensional vectors, c and v, and S[, the initial state of the local learning algorithm. 

u(s, i, a, r) =   for j := 0 to n do 
c[j]:=t\c[j] 

c[i'] := c^ + 1 
vi := v[i]]    vi' := v[i'] 
for j := 0 to n do 

v\j] '= v[j] + a c[j] (r" + 7 vi - vi') 
s, :=ut(st,i",a",v[i']) 

e(s,i)= et(shi) 

where i' and a! are the input and action values from tick t — 1; i", a", and r" are 
from tick t — 2; n is the size of the input set; s/, U/ and t\ are the internal state, 
the update function, and the evaluation function of the local learner; 0 < A < 1; 
0 < 7 < 1; and 0 < a < 1. 

Figure 64: The AHC algorithm. 

been visited recently have low values. Each of these vectors is initialized to contain 

0 values. 

The update function first updates the activation values. Each element's activa- 

tion is multiplied by A7, where 7 is the discounting rate and A is an independent 

factor that controls the degree to which activation is spread backward from the 

currently active state. Then, the activation of the state whose value is being up- 

dated on this tick, state i\ is increased by 1. The values of states are adjusted in 

proportion to their activations, so for A = 0, only the currently active state's value 

is updated on each tick. 

Next, the state values in vector v are updated. Each value v[j] is incremented by 

the product of its activation, c[j], the learning rate, a, and the prediction difference, 

r" - fv[i] - v[i'}. The quantity r[i'] is the estimated value of state i'. The quantity 

r"+fv[i] is a one-step lookahead value of state i', computed as the sum of the global 

value of state i' (as indicated by the reinforcement value r" of the previous tick) and 

the discounted value of the next state, 7u[i]. Since the one-step lookahead value is 
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a better estimate than the stored value, the difference between the two values can 

be used as an error signal for updating the stored value. This updating method 

efficiently propagates global reinforcement values back along the chain of actions 

that lead to them, making the AHC algorithm another instance of the temporal 

difference method. 

Finally, the update function feeds a learning instance to the update function 

of the local learning algorithm. The reason for updating the local learner two 

ticks behind is that if a large reinforcement value is received, we would like it to 

be reflected in the function learner as soon as possible. However, if a large r is 

received at time t, it takes two more ticks to receive the data that will allow its 

effect on v to be calculated. The algorithm would not be incorrect if it performed 

si := m(si,i',a',v[i]) instead, but it would not respond to good or bad results the 

first time they were encountered. 

The AHC algorithm has no effect on the evaluation process and simply calls the 

evaluation method of the local learning algorithm. 

Sutton has shown [71] that, for the non-discounted case, the expected values 

of the predictions found by the temporal difference method converge to the ideal 

predictions if the data sequences are generated by Markov processes and the value 

of parameter A equals 0. When A = 1, the temporal difference method generates 

the same weight adjustments as the Widrow-Hoff rule. Of course, when the agent is 

choosing actions that change the state of the world, the distributions of input data 

change and these results do not necessarily hold. 

Sutton's presentation of the AHC algorithm was combined with a version of the 

LARC algorithm for local learning. The AHC method is presented here independent 

of assumptions about the local learning algorithm. This way of breaking down 

the problem is very useful, because it allows us to independently choose a local 

reinforcement-learning algorithm that is appropriate for the sorts of environments 

in which it will be run for use in combination with the AHC algorithm. In addition, 

Sutton used linear association methods to store the values of v and c more efficiently. 

In this version, the activation and state values are simply stored in a table, but it 
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is easy to see how a variety of more efficient (if less precise) associative storage 

methods could be applied. 

There have been a number of implementations of temporal difference algorithms 

similar to AHC, but none have had a correct analysis of convergence results. The 

AHC work grew out of the adaptive critic element (ACE) used by Barto, Sutton, and 

Anderson [11]. 

Witten's [86] adaptive optimal controller algorithm computes state values as in 

the AHC algorithm, but differs from Sutton's work in the way it is combined with 

the local learner. This difference causes its performance to be significantly inferior 

[70). 

One of AI's most striking early successes was Samuel's checkers-playing program 

[60,61]. In one of its learning modes, it learned an evaluation function for board po- 

sitions from reinforcement. Although Samuel's learning procedure is very complex, 

it can be closely approximated by the AHC algorithm with 7=1. 

Another, more distantly related, learning method is Holland's bucket brigade 

method for assigning credit to chains of rules firing in a production system [33]. 

It differs significantly in the details, but shares the temporal-difference notion of 

assigning credit along a sequence based on the local predicted improvement rather 

than waiting for global reinforcement. 

9.4    Other approaches 

There have been a number of other approaches to learning from delayed reinforce- 

ment. They can be divided into those that learn a world model (generally assuming, 

unlike Rivest and Schapire [56], that there is no hidden state) and those that do 

not. 

Drescher [18] presents a theory and implementation of learning based on the 

developmental psychology of Piaget. The agent learns precondition-action-result 

schemata that allow it to achieve dynamically presented goals. Drescher's methods 

have been demonstrated in a simple deterministic world with hidden state. There 

have been a number of other efforts to learn world models. These include the work 
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of Sutton and Pinette [73], Mason, Christiansen, and Mitchell [40], Mel [42], and 

Shen [68]. 

There has been a series of attempts to solve the pole-balancing problem using 

reinforcement. The problem is motivated by a physical system in which a pole 

is flexibly mounted on a cart. The pole can rotate about its connection to the 

cart in one dimension, and the cart can move along a one-dimensional track (in 

the same dimension as the plane in which the pole moves). The goal is to control 

the cart in such a way as to keep the pole from falling over and to keep the cart 

from reaching either end of its track. The system is given an encoding of the 

positions and velocities of the angle of the pole with respect to the cart and the 

offset of the cart with respect to the midpoint of the track, and the system chooses 

between applying a fixed-magnitude force on the cart in either a positive or negative 

direction. Negative reinforcement is received whenever the pole falls over or the cart 

reaches the end of its track. The system must learn a "bang-bang" control law that 

maximizes reinforcement by keeping the pole up and the cart within limits for as 

long as possible. 

The first learning solution to this problem was the BOXES system of Michie and 

Chambers [44]. It was so named because of the quantization of the four-dimensional 

continuous-valued parameter space into a set of 255 regions or "boxes." Each box 

was viewed as making a separate decision about whether to generate a "left" or 

"right" action when the system was in that state, based on the expected run length 

given each choice of action. Learning only took place after a failure, and each policy 

was tested for an entire run. The details of the method are complex and somewhat 

ad hoc, but it recognizes the interesting issues of the problem setting, including 

temporal credit assignment and the tradeoff between acting to gain information 

and acting to gain reinforcement. 

Connell and Utgoff's CART system [17] takes advantage of the continuity of 

the parameter space, using an algorithm that does not make an a priori division 

of the space into discrete boxes. Points in the state space are determined from 

experience to be either desirable or not desirable—interpolation is used to determine 

the desirability of states that have not yet been visited. The system has considerably 
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better performance than either the BOXES system or the application of the AHC 

algorithm to this problem by Selfridge and Sutton [67] or by Anderson [3,4]. The 

difference in performance seems principally to depend on differences in the encodings 

of the inputs, however. 

9.5    Complexity Issues 

Whether we are learning action values or an evaluation function, we are confronted 

again with the problem of high computational complexity. 

With the Q and IEQ algorithms, we are back again to the kinds of exponential 

complexity in the size of the input and output that we have been trying to avoid. 

Watkins addresses this issue for Q-learning by using Albus' CMAC method [2] for 

associating Q values with input-action pairs for its "computational speed and sim- 

plicity, rather than accuracy or storage economy." It is possible to use a CMAC that 

is very space efficient, but at a potentially great cost in accuracy. 

Another method of improving computational complexity at the expense of ac- 

curacy is to use a linear associator to store the values being learned. The Q values 

could be stored as a function of a bit vector constructed by concatenating the bit- 

vector encodings of the input state and the action. Sutton uses this method in 

his implementation of AHC, storing the evaluations of input states as functions of 

bit-vector encodings of those states. It is difficult to quantify exactly how much 

expressive power is lost by using such methods and how that loss in expressiveness 

will impact the performance of the learning methods as a whole. A related method, 

used by Anderson [3], is to store predictions in a multi-layer network trained us- 

ing the error-backpropagation method (Section 3.4.3 describes this method in more 

detail). 

Algorithms, such as IEQ, that must associate a whole collection of data with an 

input-action pair are harder to make more efficient in this way. 
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0,1 

Figure 65: Environment Dl: a very simple delayed-reinforcement environment. 

Figure 66: Environment D2: a more difficult delayed-reinforcement environment. 

9.6    Empirical Comparison 

This section describes the results of three different methods of learning from delayed 

reinforcement in three simple simulated environments. 

9.6.1    Environments 

The first two environments are taken from Sutton's thesis [70]. Figures 65 and 66 

show their state-transition diagrams. The circled numbers are the reinforcement 

values of the states; most of the states have reinforcement value 0 (which is omitted 

from the figure). The first is a very easy deterministic environment. The second is a 

considerably more difficult non-deterministic environment, with little differentiation 

between "good" and "bad" actions. The third environment, from Watkins [78], is 

shown in Figure 67. It was constructed to be misleading, because, although the 

correct action in state 0 is 0, if the agent is executing a random policy, the action 1 

will have a higher value. Before we apply the learning algorithms to these domains, 
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Figure 67:  Environment D3:  a highly misleading delayed-reinforcement environ- 
ment. 

it is interesting to consider the values of the states and the expected reinforcement 

of acting optimally in each case. 

The optimal strategy for environment Dl is, obviously, always to execute action 

1. Because the world is deterministic, it will take five steps to get payoff 1, so the 

average reinforcement of the optimal policy is 0.2. The values of the states can be 

calculated by solving the following set of equations, which specify the value of each 

state in terms of its global value and the discounted value of its successor under the 

optimal policy: 

The solution to the equations is 

vo = 1 + ' yi>i 

Vl =    7*>2 

v2 =    7*>3 

V3 =     7*>4 

V4 =   7"o 

V0    = 1/(1- 75) 

Vl     = 77(1 -75) 

v2   = 73/(l -75) 
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v3   =   72/(l-75) 

v4   =   7/(l-7
5) 

which, for 7 = .9, yields the following values: vo = 2.44, uj = 1.60, U2 = 1-78, U3 = 

1.98, v4 = 2.20. 

The second automaton, D2, is non-deterministic. In this case, the optimal strat- 

egy is also always to execute action 1. The expected number of failures preceding 

the first success in a sequence of Bernoulli trials with probability p is (1 — p)/p, so 

we expect to remain in each of states 1 through 4 for an average of 1+0.4/0.6 = 1.67 

steps when executing the optimal policy. Thus, the total expected round-trip time 

is 4 x 1.67 + 1 = 7.67, making the expected reinforcement per tick approximately 

equal to 0.13. The action values are the solution to the equations 

VQ    =     1 + fVi 

v-i = 7(.4ü! + .6v2) 

v2 = f(Av2 + .6u3) 

v3 = 7(.4t>3 + .6u4) 

v4 — 7(.4u4 + .6i>o) 

which, for 7 = .9, is v0 = 1.84, ui = 0.93, v2 = 1.10, v3 = 1.31, v4 = 1.55. 

Finally, for the complex automaton D3, the optimal strategy is to take action 0 

in state 0 and action 1 in states 5, 6 and 7. This path through the transition graph 

takes 5 steps to gain reinforcement value 2, yielding an average reinforcement per 

tick of 0.4. The values of the states under the optimal strategy can be expressed as 

vo   =   jvs 

Vi   =   jv2 

V2    =    7t>3 

t>3    =    7^4 

v4   =   1 + 7U0 

«5     =    7^6 
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t>6     =     7^7 

V7   =   yvg 

Solving these equations with 7 = .9 yields the state values v0 = 3.20, V\ = 2.83, v2 = 

3.15, u3 = 3.50, vA = 3.88, v5 = 3.56, v6 = 3.96, v7 = 4.40, v8 = 4.88. 

9.6.2 Algorithms 

The following three algorithms for learning from delayed reinforcement were tested 

on each of these problems: 

• Q (described in Figure 62) 

• IEQ (described in Figure 63) 

• AHC (described in Figure 64) in combination with a version of the IE algorithm 

(described in Figure 21) that uses normal statistics and is modified for use in 

non-stationary environments. 

It would have been appropriate to compare Anderson's combined back-propagation 

and AHC method with these algorithms, but the parameter tuning problem for that 

algorithm seems computationally impractical. 

9.6.3 Parameter Tuning 

Each of these algorithms has a number of parameters. Algorithm Q has parameters 

a and 7; IEQ has parameters a^,1 7, and 6; AHC has parameters a, 7, and A; and 

IE with normal nonstationary statistics has parameters a;e and 6. The parameter 

7 is part of the specification of the correctness criterion, and it will be set to 0.9 

for each algorithm and task. To illustrate the dependence of the Q algorithm on 

its initial value, two versions of Q will be tested: one with initial values equal to 0 
1 Because we are using statistics for the normal distribution, it is easier to express the size of the 

confidence intervals in terms of a rather than zaii\ these are simply two ways of specifying the same 
parameter. 
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ALG-TASK Dl D2 D3 
Q 
a .95 .95 .95 

IEQ 

<*•> .01 .05 .001 
6 .999 .9999 .99 

AHC + IE 

a .15 .1 .5 
A .1 .2 1.0 

<*,e .05 .05 .001 
6 .9999 .99 .99 

Table 9: Best parameter values for each algorithm in environments Dl, D2, and 
D3. 

(which is below the action values in all cases) and one with initial values equal to 

20 (which is well above the action values in all cases). These two algorithms will be 

referred to as Q0 and Q20. 

For each algorithm and environment, a series of 100 trials of length 3000 were 

run with different parameter values. Table 9 shows the best set of parameter values 

found for each algorithm-environment pair. The parameter a for the Q algorithms 

is largely irrelevant: if the initial value is too small, no value of a will result good 

performance; if the initial value is large, a should be as large as possible. 

9.6.4    Results 

Using the best parameter values for each algorithm and environment, the perfor- 

mance of the algorithms was compared on 100 runs of length 3000. The performance 

metric was average reinforcement per tick, averaged over the entire run. The re- 

sults are shown in Table 10, together with the expected reinforcement of executing 

a completely random behavior (choosing actions 0 and 1 with equal probability) 

and of executing the optimal behavior. 

As in the previous sets of experiments, we must examine the relationships of 

statistically significant dominance among the-algorithms for each task. Figure 68 

shows, for each task, a pictorial representation of the results of a 1-sided t-test 
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ALG-TASK Dl D2 D3 
QO .0000 .0910 .0000 

Q20 .1907 .1222 .3780 
IEQ .1959 .1222 .2315 

AHC + IE .1988 .1153 .2923 
random .1100 .1100 .1250 
optimal .2000 .1300 .4000 

Table 10: Average reinforcement for tasks Dl, D2, and D3 over 100 runs of length 
3000. 

TASK D1 TASK D2 
AHCIE ft IEQ 

I IEQ 

Q20 

Q0 

TASK D3 

Q20 • Q20 

AHCIE AHCIE 

IEQ 

Q0 

Figure 68: Significant dominance partial order among delayed-reinforcement algo- 
rithms for each task. 

applied to each pair of experimental results. The graphs encode a partial order of 

significant dominance, with solid lines representing significance at the .95 level. 

With the best parameter values for each algorithm, it is also instructive to 

compare the rate at which performance improves as a function of the number of 

training instances. Figures 69, 70, and 71 show superimposed plots of the learning 

curves for each of the algorithms. Each point represents the average reinforcement 

received over a sequence of 100 steps, averaged over 100 runs of length 3000. 

9.6.5    Discussion 

There are no clear winners among this set of algorithms. On the simple deterministic 

task Dl, all of the algorithms approach the optimal performance level very closely. 
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Figure 69: Learning curves for Task Dl. 
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Figure 70: Learning curves for Task D2. 
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Figure 71: Learning curves for Task D3. 

It takes the longest for Q20 to improve; if the initial values were smaller it would 

converge faster. When the initial value is too small, as in QO, the algorithm performs 

significantly worse than random. 

The non-deterministic task D2 is very difficult because of the similarity in tran- 

sition probabilities between the two actions in each state. On this task, algorithms 

Q20 and IEQ perform essentially equivalently, approaching but not achieving optimal 

performance. The AHC+IE algorithm performs very poorly at first, but suddenly 

"realizes" the right course of action (perhaps when the AHC component has seen 

the higher-numbered states enough to realize that they are significantly better and 

the old statistics have decayed sufficiently in the IE component) and begins to per- 

form as well as the other two algorithms. As usual, Q0 performs far worse than the 

random strategy. 

Performance on the difficult problem of task D3 hinges on persistently trying, 

for a while, courses of action that appear bad. This persistence is necessary to 

discover that the left loop of the graph is better if the proper action strategy is 

known. The Q20 algorithm does a good job of this, and is the only one of the 

algorithms to achieve optimal performance during the course of a 3000-tick run. 

The other algorithms improve over time, but not nearly as fast. The fact that their 
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performance rises above the .2 level (which is achieved by going around the right 

loop of the graph) indicates that they are discovering the left loop of the graph. The 

QO algorithm performs as badly as possible, probably by looping between states 0 

and 5. 

More extensive experiments will be required before it is possible to formulate 

general rules of applicability of these algorithms to specific learning tasks. 



Chapter 10 

Experiments in Complex Domains 

This chapter reports on three experiments comparing algorithms introduced in pre- 

vious chapters on more complex domains. The first domain is a simulated one with 

a large number of input and output bits, but with a fairly low-complexity function 

defining the dependence of each output bit on the input bits. The second domain 

is a mobile-robot domain in which the agent learns from local reinforcement. The 

third domain is an extension of the mobile robot domain in which the agent learns 

from delayed reinforcement. The settings of the experiments will emulate, as much 

as possible, the deployment of these learning algorithms in realistic domains. 

10.1    Simple, Large, Random Environment 

This task, in its general form, has M input and M output bits. The optimal action 

mapping is generated randomly as follows: each output bit is the conjunction or 

disjunction of two input bits or their negations. If the agent chooses an action in 

agreement with this mapping, it receives reinforcement value 1 with probability px 

and 0 otherwise; if the agent's action disagrees with the optimal mapping, it receives 

reinforcement value 1 with probability p2 and 0 otherwise. 

165 
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10.1.1 Algorithms 

The following algorithms were tested in this domain: 

• IE 

• CASCADE + IE 

• CASCADE + GTRL 

The second and third algorithms consist of a set of Boolean-function learners 

combined using the CASCADE method. It is expected that the cascade of GTRL 

algorithms will be both more computationally efficient and learn more quickly than 

the other three algorithms because the functions are not too complex and the op- 

portunity for generalization is great. 

10.1.2 Task 

The algorithms were tested on an instance of the general family of large random 

environments with M = 8, pi = .8, and & = .1. It would have been desirable to 

use an even larger task, but the size of the data structures for M = 8 exhausted 

the available computational power. Each run of each algorithm was on a newly 

generated random task with the parameters described above. 

10.1.3 Parameter Settings 

When we wish to use a learning algorithm in a new setting, we will rarely have 

the luxury of performing extensive parameter-tuning runs to be sure that we get 

the best possible performance out of our algorithms. In this experiment, as well as 

in the other two described in this chapter, parameters for the algorithms will be 

chosen as well as possible to optimize performance within reasonable complexity 

constraints based on intuitions gained from the results of previous experiments that 

we have carried out. The parameter settings were: 
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IE: ZQ/2 = 3.0 

CASCADE + IE: za/2 = 3.0,6 = .9999 

CASCADE + GTRL: za/2 = 3.0,8 = .9999, H = ZM, PA = 20, R = 100 

All of the confidence-interval parameters are set to 3.0 and the decays are .9999. The 

size of the hypothesis lists, H, in the GTRL algorithm varies linearly as a function 

of the number of input bits. The number of input instances required for promotion 

was 20 and new candidates were generated once every 100 ticks. 

10.1.4    Results 

Each of the algorithms was run for 10 trials of length 10,000 each. This is is a small 

fraction of the number of trials that would be required for the agent to try all 512 

possible actions in each of 512 possible input situations. The average reinforcement 

for each algorithm on this task is 

IE   : .1019 

CASCADE + IE    : .1050 

CASCADE + GTRL    : .1634 

The cascaded generate-and-test algorithm significantly outperforms either of the 

other algorithms, due to its ability to generalize both over the input and output 

sets. The learning curves for the algorithms are shown in Figure 72. As we can 

see, the GTRL algorithm improves in performance significantly more quickly than 

the others. 

10.2    Mobile Robot Domain 

This section describes the application of algorithms from this dissertation to a 

mobile-robot learning scenario. There have been very few implementations of 

reinforcement-learning algorithms on real robotic hardware.   A notable example 



168 CHAPTER 10.   EXPERIMENTS IN COMPLEX DOMAINS 

er 

casc-gtrl 

casc-ie 

xe 

bucket  of 250 ticks 

Figure 72: Learning curves for large, random environment. 

is Maes and Brooks' [39] use of a simple algorithm to learn to coordinate predefined 

behaviors on a walking robot. A number of researchers have applied reinforcement- 

learning algorithms to simulated robotic domains, such as the cart-pole problem 

described in Chapter 3. Franklin [24] used learning-automata techniques and the 

ARP algorithm to learn to adjust the outputs of an existing controller to compensate 

for externally applied torques on a simulated robot arm. In addition, there has been 

work on learning world models, such as Clocksin and Moore's [16], Miller's [46], and 

Mel's [42] work on learning a mapping from joint positions to visual coordinates in 

the workspace of a robotic arm [42] and Mason, Christiansen, and Mitchell's [40] 

work on learning the results of using a robotic arm to tip a tray of objects in various 

ways. 

The robot pictured in Figure 73 was used to validate a variety of reinforcement- 

learning algorithms. It has two drive wheels, one on each side, which allow it to 

move forward and backward along circular arcs. A set of five "feelers" allow it to 

detect obstacles to its front and sides, the round bumper detects contact anywhere 

on its perimeter, and four photosensors, facing forward, backward, left, and right, 

measure the light levels in each direction. 
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Figure 73: Spanky, a mobile robot. 



170 CHAPTER 10.   EXPERIMENTS IN COMPLEX DOMAINS 

10.2.1 Algorithms 

The same algorithms and parameter settings were used in this experiment as in the 

previous one. 

10.2.2 Task 

In this task, the robot is given negative reinforcement, normally distributed with 

mean -2 and standard deviation 0.5 whenever the round bumper makes contact with 

any physical object. If the bumper is not engaged, the robot is given positive rein- 

forcement, normally distributed with mean 1 and standard deviation 0.2, whenever 

the light in its front sensor gets brighter. If the bumper has not engaged and the 

brightness has not increased, it is given "zero" reinforcement, normally distributed 

with mean 0 and standard deviation 0.2. 

The robot interacts with the world by making fixed-length motions, either for- 

ward or rotating in place to the left or right. The agent gets the following five bits 

of input: 

Bits 0 and 1: Which direction is currently the brightest? 0 = front, 1 = left, 2 = 

right, 3 = back. 

Bit 2: Is the rightmost feeler engaged? 

Bit 3: Is the leftmost feeler engaged? 

Bit 4: Is (at least) one of the middle three feelers engaged? 

The agent must learn a mapping from this input space to its three actions that 

maximizes its local reinforcement. It develops a behavior that avoids bumping into 

obstacles and tends to move toward the light. 

10.2.3 Results 

All of the algorithms were run in the real robotic domain, with varying degrees of 

success. Ideally, this section would describe a long series of trials of each algorithm 
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ALG er 
IE 

CASCADE + IE 
CASCADE + GTRL 

.6439 

.6203 

.4930 
random 
optimal 

.3074 

.6695 

Table 11: Average reinforcement for simulated mobile robot environment over 100 
runs of length 2000. 

on the real mobile robot. Unfortunately, it is difficult to conduct such trials fairly in 

the physical system. The first problem is that a human must intervene whenever the 

robot approaches the light source and move the robot to a new location. The second 

problem is that it takes a long time to conduct the experiments. The time that it 

takes the robot to move greatly dominates the computation time of the learning 

algorithms. So, instead of trials on the real robot, we must substitute a simulation 

of the robot and its domain described above. The simulation is not of high fidelity, 

which causes this to be a substantially different problem than that of running on 

the actual robot. Still, it serves as an interesting and slightly complex domain 

for testing reinforcement-learning algorithms. Also, the results in the simulated 

domain mirror informal impressions of the relative performance of the algorithms 

on the actual robot. 

In the robot simulation, noise is added to the action and perception of the robot. 

Each action of the simulated robot is, with probability .1, changed to a randomly 

chosen action; each perception of the state of the world is, with probability .1, 

changed to a randomly chosen world state. Whenever the robot reaches the light 

source in the simulated world, the light is "teleported" to a new randomly-chosen 

location. 

The results of running each algorithm for 100 runs of length 2000 are shown in 

Table 11. The optimal expected reinforcement value was estimated by running a 

hand-crafted non-learning behavior in the environment under the same conditions 

as the experimental algorithms. Similarly, the expected reinforcement of a random 

strategy was estimated by running a random strategy in the world.   All of the 
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Figure 74: Learning curves for the simulated mobile robot task. 

differences in expected reinforcement are significant. There is only a small difference 

in performance between the pure IE algorithm and the cascaded version, but the 

GTRL algorithm performs markedly worse than either of them. As we can see in the 

learning curves, shown in Figure 74, the GTRL algorithm takes longer to converge 

to its maximum performance, which is lower than optimal because it is continually 

trying new hypotheses. 

10.3    Robot Domain with Delayed Reinforcement 

The previous mobile robot domain can be complicated by giving the robot a large 

reinforcement only when it reaches the light source. This problem is considerably 

more difficult than other domains used for delayed reinforcement, such as the cart- 

pole domain. In the cart-pole domain, the robot receives a large negative reinforce- 

ment value whenever the pole falls over. In the absence, of a good control strategy, 

the pole will fall over quite readily, giving the learner a lot of good data early on. In 

this robot domain, the robot may execute its initial random strategy for a very long 

time before it accidentally encounters the light source. Informal experiments with 

the real mobile robot were only successful if a human took an active role near the 
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beginning of the run, putting the robot in situations from which it was relatively 

easy to reach the light and, therefore, get useful reinforcement data.1 

This section will report formal experiments carried out in a simulated version 

of the robotic domain with delayed reinforcement. 

10.3.1 Algorithms 

This experiment compares the same algorithms as were compared in the experiment 

described in Section 9.6: Q, IEQ, and AHC + IE. The parameter settings were 

Q: a = .95, init= 20 

IEQ: aie = .01, 6 = .9999 

AHC + IE: a = .1, A = .2, 6 = .9999, aie = .05 

10.3.2 Task 

The inputs and outputs available to the agent remain the same as in the local 

reinforcement task. The reinforcement generated by the world is, in this domain, 

global rather than local. When the agent comes very close to the light source, 

it is given reinforcement that is normally distributed with mean 10 and standard 

deviation 2.0; when it bumps into an obstacle, it is given reinforcement normally 

distributed with mean -2 and standard deviation 0.25; finally, if it neither bumps 

into the wall or comes near the light, it is given reinforcement normally distributed 

with mean 0 and standard deviation 0.25. When the light is reached by the robot, 

it is randomly moved to a new location. 

10.3.3 Results 

The results of running each algorithm for 10 runs of length 10,000 are shown in 

Table 12.  As before, the optimal expected reinforcement value was estimated by 
1This process is an instance of a class of methods for expediting learning that are referred to by 

psychologists [32] as "shaping." Its use in the robot domain described here was suggested by R. 
Sutton. 
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ALG er 
Q 

IEQ 
AHC + IE 

.1634 

.1828 

.3651 
random 
optimal 

.0000 

.8269 

Table 12: Average reinforcement for simulated robot domain with delayed reinforce- 
ment over 10 runs of length 10,000. 

running a hand-crafted non-learning behavior in the environment under the same 

conditions as the experimental algorithms. Similarly, the expected reinforcement of 

a random strategy was estimated by running a random strategy in the world. The 

performance of AHC + IE was significantly better than that of Q or IEQ, which were 

not significantly different from one another. The learning curves for this domain 

are shown in Figure 75. The poor performance of the algorithms in this domain 

may be somewhat deceiving. In many cases, the learning strategies learned quickly 

to perform at near-optimal levels. However, in many other cases, the robot never, 

or only late in the run, acquired enough experience with the light source to learn an 

appropriate strategy. It is likely that if the runs were another order of magnitude 

longer than those reported here, the asymptotic performance of each of the algo- 

rithms would be very high. For this reason, a "shaping" process used early in the 

runs would allow the agent to get more useful information and hence improve its 

performance. An interesting area for future research would be to formally specify 

such shaping processes and characterize their role in expediting learning. 
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Chapter 11 

Conclusion 

Simple reinforcement-learning problems can be effectively solved using the interval- 

estimation algorithm. It has two serious limitations, however. First, its computa- 

tional complexity increases exponentially in the size of the input and output spaces. 

Second, it exhibits no generalization across input and output instances. 

These problems have been addressed by the use of linear-association and error 

back-propagation methods for associative reinforcement-learning. Each of these 

methods has its own problems. The linear-association method can only learn action 

maps that are in the class of linearly-separable functions. Error backpropagation 

methods can, theoretically, learn functions of arbitrarily complexity, but it generally 

requires a large number of presentations of the learning data and is very sensitive 

to internal parameter values. 

This dissertation has addressed the problem of finding new algorithms for effi- 

ciently learning limited classes of action maps from reinforcement. 

The first step was to simplify the job of the algorithm designer by reducing 

the problem of learning action maps with many output bits to the problem of 

learning action maps with single output bits. The CASCADE method implements 

this problem reduction, providing decreased time complexity and improved learning 

rates, as well. 

Valiant's algorithm for learning Boolean functions in fc-DNF provided a useful 

foundation for creating new reinforcement-learning algorithms. The LARCKDNF and 
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IEKDNF algorithms integrate the ideas of linear-associative reinforcement-comparison 

and of interval-estimation with Valiant's methods. These new algorithms efficiently 

learn action maps in fc-DNF: they are both more time-efficient than the raw IE al- 

gorithm, require fewer presentations of data than the BP algorithm, and can learn 

a large class of functions than linear-associative approaches. 

The GTRL algorithm is also an algorithm for learning Boolean functions from 

reinforcement. Its main advantage is that it can learn low-complexity functions 

very efficiently; however, by changing internal parameter values, it can be config- 

ured to learn a variety of different classes of functions with different computational 

complexities. In addition, its use of internal symbolic representations allows it to 

be extended to learn simple sequential networks. 

All of this work has only addressed the problem of local learning from immedi- 

ate reinforcement. Existing work on temporal difference methods can also be seen 

as a problem reduction. It reduces the problem of global learning from delayed 

reinforcement to the problem of local learning from non-stationary immediate rein- 

forcement. This perspective allows TD methods to be integrated with any available 

local learning method. 

All of these methods can be integrated in various ways, such as using the CAS- 

CADE and TD problem reductions together with the GTRL, LARCKDNF, or IEKDNF 

algorithms to construct an algorithm that learns an action mapping with many 

output bits from delayed reinforcement. These combined methods have been tested 

and shown to work robustly on a physical mobile robot, demonstrating their appli- 

cability to embedded systems in the real world. 

The rest of this chapter consists of two sections. The first briefly lists the 

novel contributions of the work described in this dissertation. The second discusses 

directions for extending this research. 

11.1    Contributions 

The work described in this dissertation has made a number of contributions to 

solving the problem of learning in embedded systems. They are summarized below, 
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organized in the order in which they were presented. 

Foundations: The description of the foundations of reinforcement learning in- 

tegrates existing work in dynamic programming, learning-automata theory, 

statistics, and previous work on the foundations of reinforcement learning 

into a general framework for describing learning behaviors and measuring 

their success. In addition to making the existing work more accessible to AI 

researchers, this formulation makes it easier for researchers to compare their 

results directly and to share implementations of learning behaviors and of 

simulated environments. 

Interval Estimation Algorithm: The interval estimation algorithm is a novel 

extension of existing methods for reinforcement learning that is grounded 

directly in statistical theory. In empirical tests, it learns more effectively than 

other algorithms of its kind. However, its computational complexity makes it 

impractical for use on large problems. 

Cascade Method: The cascade method of building a reinforcement learner with 

many output bits from a collection of reinforcement learners with one output 

bit is new. It has been shown that if each of the individual components has 

learned to perform the behavior that is correct for it, the entire system will 

perform the behavior that is correct overall. The cascade method works well 

in empirical tests, often resulting in improved convergence rates as well as 

lower time complexity. 

Reinforcement Learning of fc-DNF: Two algorithms are presented that learn 

Boolean functions from reinforcement, based on Valiant's concept learning 

algorithm for concepts expressible in fc-DNF. One uses the techniques of the 

interval estimation algorithm, while the other is derived from Sutton's linear- 

association reinforcement-comparison algorithm. They are both computation- 

ally much more efficient than standard methods and perform nearly as well 

as standard methods on a variety of tasks. 
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Generate-and-Test Reinforcement Learner: The GTRL algorithm is a novel 

reinforcement-learning method that uses syntactic search through the space 

of Boolean function descriptions to learn single-bit output functions from re- 

inforcement. It is based on, but has diverged significantly from, Schlimmer's 

STAGGER system, using statistical measures of necessity and sufficiency to 

guide its search. It is highly configurable and can learn low-complexity func- 

tions very efficiently, even in the presence of a large number of irrelevant 

attributes. 

Action Maps with State: The generate-and-test reinforcement learner was ex- 

tended by adding set-reset as an additional binary operator. This extension 

allows simple action maps whose output depends on input values from arbi- 

trarily far back in history to be constructed. Although the method cannot 

generate all possible sequential networks, it does represent a first effort at 

learning action maps with state directly from reinforcement. 

Delayed Reinforcement: Two existing approaches to learning from delayed rein- 

forcement were combined with the interval-estimation method to yield robust 

algorithms. Watkins' Q-learning method was extended to use the techniques 

of the interval-estimation method to keep the algorithm from converging pre- 

maturely to suboptimal solutions. In addition, Sutton's AHC method of learn- 

ing to generate a local reinforcement signal was tested with the IE algorithm 

as the local learning component. 

Mobile Robot Experiments: Many of the algorithms described here were tested 

on a mobile robot in a moderately complex and noisy physical environment. 

In these experiments, the algorithms were successfully used to learn control 

strategies and exhibited considerable robustness. 

11.2    Future Work 

There is a long list of interesting variations and extensions that could be made to 

the work described in this dissertation. Many of them are suggested at the ends of 
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the relevant chapters. As well as considering local improvements, it is important to 

understand the global setting of this work. 

Tabula rasa learning, as described in this dissertation, may not be a sufficient 

method for creating intelligent embedded agents. However, the methods of rein- 

forcement learning may be used in concert with other knowledge provided in differ- 

ent forms by a human programmer, in order to construct agents that start with a 

useful base of knowledge and can improve upon it. Knowledge might be provided 

by programmers in a number of different forms. 

One of the simplest kinds of information that would improve the performance 

of reinforcement-learning algorithms is the expected reinforcement of the optimal 

policy. An agent that has this information can use it to make more informed trade- 

offs between acting to gain information and acting to gain reinforcement. The 

agent will be able to tell when it has found the best policy and need not experiment 

further. 

Russell [59] has introduced the idea of using determinations to bias learning. 

Determinations are, essentially, descriptions of which input values the outputs de- 

pend on. Such information would be of great help in constraining the search done 

by the GTRL algorithm or in limiting the size of the set of conjunctive terms in the 

fc-DNF algorithms. 

Finally, we might start from a complete or partial program specified in terms 

of condition-action rules. An interesting research direction would be to develop 

representations of programs that are amenable to adjustment using reinforcement- 

learning methods. 
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Appendix A 

Statistics in GTRL 

This appendix describes three statistical modules that can be used with the GTRL 

algorithm. They can be applied when reinforcement is binomially or normally 

distributed, as well as in cases for which there is no model. Each module implements 

the statistical functions described in Section 7.3. 

A.l    Binomial Statistics 

Each hypothesis has the following set of statistics associated with it: 

bo The number of times this hypothesis has agreed with the action 0 (not necessarily 

chosen by it) and received reinforcement value 0 (mnemonically "bad 0"). 

6i The number of times this hypothesis has agreed with the action 1 and received 

reinforcement value 0. 

go The number of times this hypothesis has agreed with the action 0 and received 

reinforcement value 1 (mnemonically, "good 0"). 

0i The number of times this hypothesis has agreed with the action 1 and received 

reinforcement value 1. 

pb0 The number of times this hypothesis has chosen the action 0 and received 

reinforcement value 0 (mnemonically, "predicted bad 0"). 

183 
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pbi The number of times this hypothesis has chosen the action 1 and received 

reinforcement value 0. 

pgo The number of times this hypothesis has chosen the action 0 and received 

reinforcement value 1 (mnemonically, predicted good 0). 

pgi The number of times this hypothesis has chosen the action 1 and received 

reinforcement value 1. 

The procedure for updating these statistics should be apparent from the descriptions 

given above. 

Given this data structure, we can define the statistical functions as follows: 

age(h)   =   b0 + b1+g0 + g1 

erth)   =   -  
&0 + &1 +9o + gi 

er-ub(h)   =   ub(g0 +g1,b0 + b1 +g0 +gx) 

erpln)   =   — ;  
pöo + pbi + pgo + P9i 

erp-ub(h)   =   ub(pg0 + pgi, pb0 + pbi +pg0 + pgi) 

N(h)   =       9o 

S(h)   = 

9o + bo 
9i 

9i + bi 

where the upper-bound function, ub, is defined [36] as 

i+#+^#)(i-?)+% 
ub(x,n) = -g- 

The parameter za/2 is used to determine the size of the confidence interval for 

computing ub. 
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A.2    Normal Statistics 

Each hypothesis has the following set of statistics associated with it: 

n0 The number of times this hypothesis has agreed with the action 0 (not necessarily 

chosen by it). 

ni The number of times this hypothesis has agreed with the action 1. 

so The sum of the reinforcement values received when the hypothesis has agreed 

with the action 0. 

si The sum of the reinforcement values received when the hypothesis has agreed 

with action 1. 

ss The sum of the squares of the reinforcement values received when the hypothesis 

has agreed with the action taken. 

rip The number of times this hypothesis has chosen an action. 

sp The sum of reinforcement values received when the hypothesis has chosen an 

action. 

ssp The sum of the squares of the reinforcement values received when the hypothesis 

has chosen an action. 

The procedure for updating these statistics should be apparent from the descriptions 

given above. 

Given this data structure, we can define the statistical functions as follows: 

age(h)   =   n0 + ni 

er(h)   =     
Tlo + Tli 

er-ub(h)   =   nub(n0 + ni,s0 + si,ss) 

erp(h)   =   i£. 
np 

er-ub(h)   =   nub(np,spissp) 
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N(h) 

S(h) 
n0 

where the normal upper-bound function, nub, is defined as 

nu6(n,E^,E^) = y + C/21)^ 

where y = x/n is the sample mean, 

5 = 
nEi2-(Ei)2 

^|       n(n - 1) 

is the sample standard deviation, and v£j2 is Student's t function with n — 1 degrees 

of freedom [69]. The parameter zQ/2 is used to determine the size of the confidence 

interval for computing nub. 
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A.3    Non-parametric Statistics 

This statistical module is parametrized by w, the window size, as well as by the 

confidence-interval parameter z0/2. The parameter tu controls the size of the data 

buffers kept by the module. Because this method employs no summary statistics, 

all of the data for the last w ticks are stored in this module. Each hypothesis has 

the following set of statistics associated with it: 

n The number of times this hypothesis has agreed with the action taken. 

rt A list of the reinforcement values of the last w ticks on which this hypothesis 

agreed with the action taken, sorted increasing by time received. 

rv A list of the reinforcement values of the last w ticks on which this hypothesis 

agreed with the action taken, sorted increasing by value. 

n0 The number of times this hypothesis has agreed with the action 0. 

rto A list of the reinforcement values of the last w ticks on which this hypothesis 

agreed with the action 0, sorted increasing by time received. 

rv0 A list of the reinforcement values of the last w ticks on which this hypothesis 

agreed with the action 0, sorted increasing by value. 

n\ The number of times this hypothesis has agreed with the action 1. 

rn A list of the reinforcement values of the last tu ticks on which this hypothesis 

agreed with the action 1, sorted increasing by time received. 

r„! A list of the reinforcement values of the last tu ticks on which this hypothesis 

agreed with the action 1, sorted increasing by value. 

np The number of times this hypothesis has chosen the action. 

rtp A list of the reinforcement values of the last w ticks on which this hypothesis 

chose the action, sorted increasing by time received. 
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rvp A list of the reinforcement values of the last w ticks on which this hypothesis 

chose the action, sorted increasing by value. 

Updating these statistics is slightly more complex that in the previous cases. The 

n's are simply incremented appropriately. As long as the n value is less than or 

equal to w, new data are simply inserted into the appropriate places in the lists. 

Once n is greater than w, on each tick, the first element of rt is removed from both 

rt and r„, and the new reinforcement value is inserted into the resulting rv and put 

on the end of the resulting rt. This keeps the window of data sliding along. We 

need rt in order to know which element to remove from rv before we can add a new 

element. 

Given this data structure, we can define the statistical functions, using the 

ordinary sign test [26], as follows: 

age(h) = n 

er(h) = rv[[imn(w,n)/2\] 

er-ub(h) = rv[min(u>,n) — u] 

erp(h) = rwp[[min(u>,n,,)/2J] 

er-ub(k) = rvp[imn(w, np) — u] 

N(h) = rv0[Lmin(w,n0)/2j] 

S(h) = rvl[[mm(w,ni)/2j] 

where value u is chosen to be the largest value such that 

(       U=o       ) 
\nk.5n < a/2 .) 

For large values of n, u can be approximated using the normal distribution. 



Appendix B 

Simplifying Boolean Expressions 

in GTRL 

This appendix describes the Boolean canonicalization and simplification rules that 

are used in the GTRL algorithm. It is assumed that simplification happens when 

a conjunction, disjunction, or set-reset expression is being constructed and that 

the arguments have already been simplified and canonicalized. The algorithm is 

described as first constructing the combined hypothesis, then testing to see if has 

depth appropriate to the level of the algorithm for which it was constructed. In 

fact, the procedures for constructing composite hypotheses simply return nil if any 

applicable simplification rules can be found. 

The disjunctive hypothesis e\ V e2 can be simplified to a lower level of complexity 

if any of the following statements is true (e stands for any expression): 

ei = c2 

ex = false 

t\ = true 

e2 = false 

e2 = true 

ea = -ie2 

e2 = ->ei 
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ei = e2 Ve 

ei = eVc2 

C2 = ex Ve 

e2 = eVcj 

ei = e2 A e 

Cl = e Ae2 

e2 
= ei Ae 

e2 
= e A ei 

The conjunctive hypothesis ej A e2 can also be simplified in any of the situations 

described above. The set-reset hypothesis SR(ei,e2) can be simplified in all of the 

situations described above, except the ones in which t\ = e2 A e or e\ = e A e2. 

To see this, note that SR(a, a A b) = SR(a, b) because setting takes priority, but 

SR(a A b, a) cannot be reduced. 

Canonicalization consists of ordering the two top-level subexpressions, because 

they are assumed to have already been canonicalized. An arbitrary ordering is de- 

fined on operators; atomic expressions referring to input bits are ordered according 

to their index into the input vector. The expression ej is less than expression e2 if 

and only if 

• t\ and e2 are both atoms and t\ < e2; 

• ei is an atom and e2 is not; 

• neither ea nor e2 is an atom and the top level operator of ei is less than the 

top level operator of e2; 

• neither e\ nor c2 is an atom, they both have the same top-level operator, 

and the first subexpression of t\ is less than (under this definition) the first 

subexpression of e2; or 

• neither ex nor e2 is an atom, they both have the same top-level operator, they 

both have the same first subexpression, and the second subexpression of ej is 

less than (under this definition) the second subexpression of e2. 

-"N 
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